Cisco ACI

ACI Cisco

Cisco ACI Components

In today's rapidly evolving technological landscape, organizations are constantly seeking innovative solutions to streamline their network infrastructure. Enter Cisco ACI Networks, a game-changing technology that promises to redefine networking as we know it. In this blog post, we will explore the key features and benefits of Cisco ACI Networks, shedding light on how it is transforming the way businesses design, deploy, and manage their network infrastructure.

Cisco ACI, short for Application Centric Infrastructure, is an advanced networking solution that brings together physical and virtual environments under a single, unified policy framework. By providing a holistic approach to network provisioning, automation, and orchestration, Cisco ACI Networks enable organizations to achieve unprecedented levels of agility, efficiency, and scalability.

Simplified Network Management: Cisco ACI Networks simplify network management by abstracting the underlying complexity of the infrastructure. With a centralized policy model, administrators can define and enforce network policies consistently across the entire network fabric, regardless of the underlying hardware or hypervisor.

Enhanced Security: Security is a top concern for any organization, and Cisco ACI Networks address this challenge head-on. By leveraging microsegmentation and integration with leading security platforms, ACI Networks provide granular control and visibility into network traffic, helping organizations mitigate potential threats and adhere to compliance requirements.

Scalability and Flexibility: The dynamic nature of modern business demands a network infrastructure that can scale effortlessly and adapt to changing requirements. Cisco ACI Networks offer unparalleled scalability and flexibility, allowing businesses to seamlessly expand their network footprint, add new services, and deploy applications with ease.

Data Center Virtualization: Cisco ACI Networks have revolutionized data center virtualization by providing a unified fabric that spans physical and virtual environments. This enables organizations to achieve greater operational efficiency, optimize resource utilization, and simplify the deployment of virtualized workloads.

Multi-Cloud Connectivity: In the era of hybrid and multi-cloud environments, connecting and managing disparate cloud services can be a daunting task. Cisco ACI Networks facilitate seamless connectivity between on-premises data centers and various public and private clouds, ensuring consistent network policies and secure communication across the entire infrastructure.

Cisco ACI Networks offer a paradigm shift in network infrastructure, empowering organizations to build agile, secure, and scalable networks tailored to their specific needs. With its comprehensive feature set, simplified management, and seamless integration with virtual and cloud environments, Cisco ACI Networks are poised to shape the future of networking. Embrace this transformative technology, and unlock a world of possibilities for your organization.

Highlights: Cisco ACI Components

The ACI Fabric

Cisco ACI is a software-defined networking (SDN) solution that integrates with software and hardware. With the ACI, we can create software policies and use hardware for forwarding, an efficient and highly scalable approach offering better performance. The hardware for ACI is based on the Cisco Nexus 9000 platform product line. The APIC centralized policy controller drives the software, which stores all configuration and statistical data.

–The Cisco Nexus Family–

To build the ACI underlay, you must exclusively use the Nexus 9000 family of switches. You can choose from modular Nexus 9500 switches or fixed 1U to 2U Nexus 9300 models. Specific models and line cards are dedicated to the spine function in ACI fabric; others can be used as leaves, and some can be used for both purposes. You can combine various leaf switches inside one fabric without any limitations.

a) Cisco ACI Fabric: Cisco ACI’s foundation lies in its fabric, which forms the backbone of the entire infrastructure. The ACI fabric comprises leaf switches, spine switches, and the application policy infrastructure controller (APIC). Each component ensures a scalable, agile, and resilient network.

b) Leaf Switches: Leaf switches serve as the access points for endpoints within the ACI fabric. They provide connectivity to servers, storage devices, and other network devices. With their high port density and advanced features, such as virtual port channels (vPCs) and fabric extenders (FEX), leaf switches enable efficient and flexible network designs.

c) Spine Switches: Spine switches serve as the core of the ACI fabric, providing high-bandwidth connectivity between the leaf switches. They use a non-blocking, multipath forwarding mechanism to ensure optimal traffic flow and eliminate bottlenecks. With their modular design and support for advanced protocols like Ethernet VPN (EVPN), spine switches offer scalability and resiliency.

d) Application Policy Infrastructure Controller (APIC): At the heart of Cisco ACI is the APIC, a centralized management and policy control plane. The APIC acts as a single control point, simplifying network operations and enabling policy-based automation. It provides a comprehensive view of the entire fabric, allowing administrators to define and enforce policies across the network.

e) Integration with Virtualization and Cloud Environments: Cisco ACI seamlessly integrates with virtualization platforms such as VMware vSphere and Microsoft Hyper-V and cloud environments like Amazon Web Services (AWS) and Microsoft Azure. This integration enables consistent policy enforcement and visibility across physical, virtual, and cloud infrastructures, enhancing agility and simplifying operations.

–ACI Architecture: Spine and Leaf–

To be used as ACI spines or leaves, Nexus 9000 switches must be equipped with powerful Cisco CloudScale ASICs manufactured using 16-nm technology. The following figure shows the Cisco ACI based on the Nexus 9000 series. Cisco Nexus 9300 and 9500 platform switches support Cisco ACI. As a result, organizations can use them as spines or leaves to utilize an automated, policy-based systems management approach fully. 

Cisco ACI Components
Diagram: Cisco ACI Components. Source is Cisco

**Hardware-based Underlay**

Server virtualization helped by decoupling workloads from the hardware, making the compute platform more scalable and agile. However, the server is not the main interconnection point for network traffic. So, we need to look at how we could virtualize the network infrastructure similarly to the agility gained from server virtualization.

**Mapping Network Endpoints**

This is carried out with software-defined networking and overlays that could map network endpoints and be spun up and down as needed without human intervention. In addition, the SDN architecture includes an SDN controller and an SDN network that enables an entirely new data center topology.

**Specialized Forwarding Chips**

In ACI, hardware-based underlay switching offers a significant advantage over software-only solutions due to specialized forwarding chips. Furthermore, thanks to Cisco’s ASIC development, ACI brings many advanced features, including security policy enforcement, microsegmentation, dynamic policy-based redirect (inserting external L4-L7 service devices into the data path), or detailed flow analytics—besides the vast performance and flexibility.

Related: For pre-information, you may find the following helpful:

  1. Data Center Security 
  2. VMware NSX

Cisco ACI Components

 Introduction to Leaf and Spine

The Cisco SDN ACI works with a Clos architecture, a fully meshed ACI network. Based on a spine leaf architecture. As a result, every Leaf is physically connected to every Spine, enabling traffic forwarding through non-blocking links. Physically, a leaf switch set creates a leaf layer attached to the spines in a full BIPARTITE graph. This means that each Leaf is connected to each Spine, and each Spine is connected to each Leaf

The ACI uses a horizontally elongated Leaf and Spine architecture with one hop to every host in an entirely messed ACI fabric, offering good throughput and convergence needed for today’s applications.

The ACI fabric: Does Not Aggregate Traffic

A key point in the spine-and-leaf design is the fabric concept, like a stretch network. One of the core ideas around a fabric is that it does not aggregate traffic. This does increase data center performance along with a non-blocking architecture. With the spine-leaf topology, we are spreading a fabric across multiple devices.

Required: Increased Bandwidth Available

The result of the fabric is that each edge device has the total bandwidth of the fabric available to every other edge device. This is one big difference from traditional data center designs; we aggregate the traffic by either stacking multiple streams onto a single link or carrying the streams serially.

Challenge: Oversubscription

With the traditional 3-tier design, we aggregate everything at the core, leading to oversubscription ratios that degrade performance. With the ACI Leaf and Spine design, we spread the load across all devices with equidistant endpoints, allowing us to carry the streams parallel.

Required: Routed Multipathing

Then, we have horizontal scaling load balancing.  Load balancing with this topology uses multipathing to achieve the desired bandwidth between the nodes. Even though this forwarding paradigm can be based on Layer 2 forwarding ( bridging) or Layer 3 forwarding ( routing), the ACI leverages a routed approach to the Leaf and Spine design, and we have Equal Cost Multi-Path (ECMP) for both Layer 2 and Layer 3 traffic. 

**Overlay and Underlay Design**

Mapping Traffic:

So you may be asking how we can have Layer 3 routed core and pass Layer 2 traffic. This is done using the overlay, which can map different traffic types to other overlays. So, we can have Layer 2 traffic mapped to an overlay over a routed core.

L3 active-active links: ACI links between the Leaf and the Spine switches are L3 active-active links. Therefore, we can intelligently load balance and traffic steer to avoid issues. We don’t need to rely on STP to block links or involve STP in fixing the topology.

Challenge: IP – Identity & Location

When networks were first developed, there was no such thing as an application moving from one place to another while it was in use. So, the original architects of IP, the communication protocol used between computers, used the IP address to indicate both the identity of a device connected to the network and its location on the network. Today, in the modern data center, we need to be able to communicate with an application or application tier, no matter where it is.

Required: Overlay Encapsulation

One day, it may be in location A and the next in location B, but its identity, which we communicate with, is the same on both days. An overlay is when we encapsulate an application’s original message with the location to which it needs to be delivered before sending it through the network. Once it arrives at its final destination, we unwrap it and deliver the original message as desired.

The identities of the devices (applications) communicating are in the original message, and the locations are in the encapsulation, thus separating the place from the identity. This wrapping and unwrapping is done on a per-packet basis and, therefore, must be done quickly and efficiently.

**Overlay and Underlay Components**

The Cisco SDN ACI has an overlay and underlay concept, which forms a virtual overlay solution. The role of the underlay is to glue together devices so the overlay can work and be built on top. So, the overlay, which is VXLAN, runs on top of the underlay, which is IS-IS. In the ACI, the IS-IS protocol provides the routing for the overlay, which is why we can provide ECMP from the Leaf to the Spine nodes. The routed underlay provides an ECMP network where all leaves can access Spine and have the same cost links. 

ACI overlay
Diagram: Overlay. Source Cisco

Underlay & Overlay Interaction

Example: 

Let’s take a simple example to illustrate how this is done. Imagine that application App-A wants to send a packet to App-B. App-A is located on a server attached to switch S1, and App-B is initially on switch S2. When App-A creates the message, it will put App-B as the destination and send it to the network; when the message is received at the edge of the network, whether a virtual edge in a hypervisor or a physical edge in a switch, the network will look up the location of App-B in a “mapping” database and see that it is attached to switch S2.

It will then put the address of S2 outside of the original message. So, we now have a new message addressed to switch S2. The network will forward this new message to S2 using traditional networking mechanisms. Note that the location of S2 is very static, i.e., it does not move, so using traditional mechanisms works just fine.

Upon receiving the new message, S2 will remove the outer address and thus recover the original message. Since App-B is directly connected to S2, it can easily forward the message to App-B. App-A never had to know where App-B was located, nor did the network’s core. Only the edge of the network, specifically the mapping database, had to know the location of App-B. The rest of the network only had to see the location of switch S2, which does not change.

Let’s now assume App-B moves to a new location switch S3. Now, when App-A sends a message to App-B, it does the same thing it did before, i.e., it addresses the message to App-B and gives the packet to the network. The network then looks up the location of App-B and finds that it is now attached to switch S3. So, it puts S3’s address on the message and forwards it accordingly. At S3, the message is received, the outer address is removed, and the original message is delivered as desired.

App-A did not track App-B’s movement at all. App-B’s address identified It, while the switch’s address, S2 or S3, identified its location. App-A can communicate freely with App-B no matter where It is located, allowing the system administrator to place App-B in any area and move it as desired, thus achieving the flexibility needed in the data center.

Multicast Distribution Tree (MDT)

We have a Multicast Distribution Tree MDT tree on top that is used to forward multi-destination traffic without having loops. The Multicast distribution tree is dynamically built to send flood traffic for specific protocols. Again, it does this without creating loops in the overlay network. The tunnels created for the endpoints to communicate will have tunnel endpoints. The tunnel endpoints are known as the VTEP. The VTEP addresses are assigned to each Leaf switch from a pool that you specify in the ACI startup and discovery process.

Normalize the transports

VXLAN tunnels in the ACI fabric normalize the transports in the ACI network. Therefore, traffic between endpoints can be delivered using the VXLAN tunnel, resulting in any transport network regardless of the device connecting to the fabric. 

So, using VXLAN in the overlay enables any network, and you don’t need to configure anything special on the endpoints for this to happen. The endpoints that connect to the ACI fabric do not need special software or hardware. The endpoints send regular packets to the leaf nodes they are connected to directly or indirectly. As endpoints come online, they send traffic to reach a destination.

Bridge Domains and VRF

Therefore, the Cisco SDN ACI under the hood will automatically start to build the VXLAN overlay network for you. The VXLAN network is based on the Bridge Domain (BD), or VRF ACI constructs deployed to the leaf switches. The Bridge Domain is for Layer 2, and the VRF is for Layer 3. So, as devices come online and send traffic to each other, the overlay will grow in reachability in the Bridge Domain or the VRF. 

Direct host routing for endoints

Routing within each tenant, VRF is based on host routing for endpoints directly connected to the Cisco ACI fabric. For IPv4, the host routing is based on the /32, giving the ACI a very accurate picture of the endpoints. Therefore, we have exact routing in the ACI.  In conjunction, we have a COOP database that runs on the Spines and offers remarkably optimized fabric to know where all the endpoints are located.

To facilitate this, every node in the fabric has a TEP address, and we have different types of TEPs depending on the device’s role. The Spine and the Leaf will have TEP addresses but will differ from each other.

COOP database
Diagram: COOP database

The VTEP and PTEP

The Leaf’s nodes are the Virtual Tunnel Endpoints (VTEP), which are also known as the physical tunnel endpoints (PTEP) in ACI. These PTEP addresses represent the “WHERE” in the ACI fabric where an endpoint lives. Cisco ACI uses a dedicated VRF and a subinterface of the uplinks from the Leaf to the Spines as the infrastructure to carry VXLAN traffic. In Cisco ACI terminology, the transport infrastructure for VXLAN traffic is known as Overlay-1, which is part of the tenant “infra.” 

**The Spine TEP**

The Spines also have a PTEP and an additional proxy TEP, which are used for forwarding lookups into the mapping database. The Spines have a global view of where everything is, which is held in the COOP database synchronized across all Spine nodes. All of this is done automatically for you.

**Anycast IP Addressing**

For this to work, the Spines have an Anycast IP address known as the Proxy TEP. The Leaf can use this address if they do not know where an endpoint is, so they ask the Spine for any unknown endpoints, and then the Spine checks the COOP database. This brings many benefits to the ACI solution, especially for traffic optimizations and reducing flooded traffic in the ACI. Now, we have an optimized fabric for better performance.

The ACI optimizations

**Mouse and elephant flow**

This provides better performance for load balancing different flows. For example, in most data centers, we have latency-sensitive flows, known as mouse flows, and long-lived bandwidth-intensive flows, known as elephant flows. 

The ACI has more precisely load-balanced traffic using algorithms that optimize mouse and elephant flows and distribute traffic based on flow lets: flow let load-balancing. Within a Leaf, Spine latency is low and consistent from port to port.

The max latency of a packet from one port to another in the architecture is the same regardless of the network size. So you can scale the network without degrading performance. Scaling is often done on a POD-by-POD basis. For more extensive networks, each POD would be its Leaf and Spine network.

**ARP optimizations: Anycast gateways**

The ACI comes by default with a lot of traffic optimizations. Firstly, instead of using an ARP and broadcasting across the network, that can hamper performance. The Leaf can assume that the Spine will know where the destination is ( and it does via the COOP database ), so there is no need to broadcast to everyone to find a destination.

If the Spine knows where the endpoint is, it will forward the traffic to the other Leaf. If not, it will drop it.

**Fabric anycast addressing**

This again adds performance benefits to the ACI solution as the table sizes on the Leaf switches can be kept smaller than they would if they needed to know where all the destinations were, even if they were not or never needed to communicate with them. On the Leaf, we have an Anycast address too.

These fabric Anycast addresses are available for Layer 3 interfaces. On the Leaf ToR, we can establish an SVI that uses the same MAC address on every ToR; therefore, when an endpoint needs to route to a ToR, it doesn’t matter which ToR you use. The Anycast Address is spread across all ToR leaf switches. 

**Pervasive gateway**

Now we have predictable latency to the first hop, and you will use the local route VRF table within that ToR instead of traversing the fabric to a different ToR. This is the Pervasive Gateway feature that is used on all Leaf switches. The Cisco ACI has many advanced networking features, but the pervasive gateway is my favorite. It does take away all the configuration mess we had in the past.

ACI Cisco: Integrations

  • Routing Control Platform

Then came along Cisco SDN ACI, the ACI Cisco, which operates differently from the traditional data center with an application-centric infrastructure. The Cisco application-centric infrastructure achieves resource elasticity with automation through standard policies for data center operations and consistent policy management across multiple on-premises and cloud instances.

  • Extending & Integrating the fabric

What makes the Cisco ACI interesting is its several vital integrations. I’m not talking about extending the data center with multi-pod and multi-site, for example, with AlgoSec, Cisco AppDynamics, and SD-WAN. AlgoSec enables secure application delivery and policy across hybrid network estates, while AppDynamic lives in a world of distributed systems Observability. SD-WAN enabled path performance per application with virtual WANs.

Cisco Multi-Pod Design

Cisco ACI Multi-Pod is part of the “Single APIC Cluster / Single Domain” family of solutions, as a single APIC cluster is deployed to manage all the interconnected ACI networks. These separate ACI networks are named “pods,” Each looks like a regular two-tier spine-leaf topology. The same APIC cluster can manage several pods, and to increase the resiliency of the solution, the various controller nodes that make up the cluster can be deployed across different pods.

ACI Multi-Pod
Diagram: Cisco ACI Multi-Pod. Source Cisco.

ACI Cisco and AlgoSec

With AlgoSec integrated with the Cisco ACI, we can now provide automated security policy change management for multi-vendor devices and risk and compliance analysis. The AlgoSec Security Management Solution for Cisco ACI extends ACI’s policy-driven automation to secure various endpoints connected to the Cisco SDN ACI fabric.

These simplify network security policy management across on-premises firewalls, SDNs, and cloud environments. They also provide visibility into ACI’s security posture, even across multi-cloud environments. 

ACI Cisco and AppDynamics 

Then, with AppDynamics, we are heading into Observability and controllability. Now, we can correlate app health and network for optimal performance, deep monitoring, and fast root-cause analysis across complex distributed systems with numbers of business transactions that need to be tracked.

This will give your teams complete visibility of your entire technology stack, from your database servers to cloud-native and hybrid environments. In addition, AppDynamics works with agents that monitor application behavior in several ways. We will examine the types of agents and how they work later in this post.

ACI Cisco and SD-WAN 

SD-WAN brings a software-defined approach to the WAN. These enable a virtual WAN architecture to leverage transport services such as MPLS, LTE, and broadband internet services. So, SD-WAN is not a new technology; its benefits are well known, including improving application performance, increasing agility, and, in some cases, reducing costs.

The Cisco ACI and SD-WAN integration makes active-active data center design less risky than in the past. The following figures give a high-level overview of the Cisco ACI and SD-WAN integration. For pre-information generic to SD-WAN, go here: SD-WAN Tutorial

SD WAN integration
Diagram: Cisco ACI and SD-WAN integration

The Cisco SDN ACI with SD-WAN integration helps ensure an excellent application experience by defining application Service-Level Agreement (SLA) parameters. Cisco ACI releases 4.1(1i) and adds support for WAN SLA policies. This feature enables admins to apply pre-configured policies to specify the packet loss, jitter, and latency levels for the tenant traffic over the WAN.

When you apply a WAN SLA policy to the tenant traffic, the Cisco APIC sends the pre-configured policies to a vManage controller. The vManage controller, configured as an external device manager that provides SDWAN capability, chooses the best WAN link that meets the loss, jitter, and latency parameters specified in the SLA policy.

Openshift and Cisco SDN ACI

OpenShift Container Platform (formerly known as OpenShift Enterprise) or OCP is Red Hat’s offering for the on-premises private platform as a service (PaaS). OpenShift is based on the Origin open-source project and is a Kubernetes distribution, the defacto for container-based virtualization. The foundation of the OpenShift networking SDN is based on Kubernetes and, therefore, shares some of the same networking technology along with some enhancements, such as the OpenShift route construct.

Other data center integrations

Cisco SDN ACI has another integration with Cisco DNA Center/ISE that maps user identities consistently to endpoints and apps across the network, from campus to the data center. Cisco Software-Defined Access (SD-Access) provides policy-based automation from the edge to the data center and the cloud.

Cisco SD-Access provides automated end-to-end segmentation to separate user, device, and application traffic without redesigning the network. This integration will enable customers to use standard policies across Cisco SD-Access and Cisco ACI, simplifying customer policy management using Cisco technology in different operational domains.

OpenShift and Cisco ACI

OpenShift does this with an SDN layer and enhances Kubernetes networking to create a virtual network across all the nodes. It is made with the Open Switch standard. For OpenShift SDN, this pod network is established and maintained by the OpenShift SDN, configuring an overlay network using a virtual switch called the OVS bridge. This forms an OVS network that gets programmed with several OVS rules. The OVS is a popular open-source solution for virtual switching.

OpenShift SDN plugin

We mentioned that you could tailor the virtual network topology to suit your networking requirements, which can be determined by the OpenShift SDN plugin and the SDN model you select. With the default OpenShift SDN, several modes are available. This level of SDN mode you choose is concerned with managing connectivity between applications and providing external access to them. Some modes are more fine-grained than others. The Cisco ACI plugins offer the most granular.

Integrating ACI and OpenShift platform

The Cisco ACI CNI plugin for the OpenShift Container Platform provides a single, programmable network infrastructure, enterprise-grade security, and flexible micro-segmentation possibilities. The APIC can provide all networking needs for the workloads in the cluster. Kubernetes workloads become fabric endpoints, like Virtual Machines or Bare Metal endpoints.

Cisco ACI CNI Plugin

The Cisco ACI CNI plugin extends the ACI fabric capabilities to OpenShift clusters to provide IP Address Management, networking, load balancing, and security functions for OpenShift workloads. In addition, the Cisco ACI CNI plugin connects all OpenShift Pods to the integrated VXLAN overlay provided by Cisco ACI.

Cisco SDN ACI and AppDynamics

AppDynamis overview

So, an application requires multiple steps or services to work. These services may include logging in and searching to add something to a shopping cart. These services invoke various applications, web services, third-party APIs, and databases, known as business transactions.

The user’s critical path

A business transaction is the essential user interaction with the system and is the customer’s critical path. Therefore, business transactions are the things you care about. If they start to go, your system will degrade. So, you need ways to discover your business transactions and determine if there are any deviations from baselines. This should also be automated, as learning baseline and business transitions in deep systems is nearly impossible using the manual approach.

So, how do you discover all these business transactions?

AppDynamics automatically discovers business transactions and builds an application topology map of how the traffic flows. A topology map can view usage patterns and hidden flows, acting as a perfect feature for an Observability platform.

AppDynamic topology

AppDynamics will automatically discover the topology for all of your application components. It can then build a performance baseline by capturing metrics and traffic patterns. This allows you to highlight issues when services and components are slower than usual.

AppDynamics uses agents to collect all the information it needs. The agent monitors and records the calls that are made to a service. This is from the entry point and follows executions along its path through the call stack. 

Types of Agents for Infrastructure Visibility

If the agent is installed on all critical parts, you can get information about that specific instance, which can help you build a global picture. So we have an Application Agent, Network Agent, and Machine Agent for Server visibility and Hardware/OS.

  • App Agent: This agent will monitor apps and app servers, and example metrics will be slow transitions, stalled transactions, response times, wait times, block times, and errors.  
  • Network Agent: This agent monitors the network packets, TCP connection, and TCP socket. Example metrics include performance impact Events, Packet loss, and retransmissions, RTT for data transfers, TCP window size, and connection setup/teardown.
  • Machine Agent Server Visibility: This agent monitors the number of processes, services, caching, swapping, paging, and querying. Example Metrics include hardware/software interrupts, virtual memory/swapping, process faults, and CPU/DISK/Memory utilization by the process.
  • Machine Agent: Hardware/OS – disks, volumes, partitions, memory, CPU. Example metrics: CPU busy time, MEM utilization, and pieces file.

Automatic establishment of the baseline

A baseline is essential, a critical step in your monitoring strategy. Doing this manually is hard, if not impossible, with complex applications. It is much better to have this done automatically. You must automatically establish the baseline and alert yourself about deviations from it.

This will help you pinpoint the issue faster and resolve it before it can be affected. Platforms such as AppDynamics can help you here. Any malicious activity can be seen from deviations from the security baseline and performance issues from the network baseline.

Summary: Cisco ACI Components

In the ever-evolving world of networking, organizations are constantly seeking ways to enhance their infrastructure’s performance, security, and scalability. Cisco ACI (Application Centric Infrastructure) presents a cutting-edge solution to these challenges. By unifying physical and virtual environments and leveraging network automation, Cisco ACI revolutionizes how networks are built and managed.

Understanding Cisco ACI Architecture

At the core of Cisco ACI lies a robust architecture that enables seamless integration between applications and the underlying network infrastructure. The architecture comprises three key components:

1. Application Policy Infrastructure Controller (APIC):

The APIC serves as the centralized management and policy engine of Cisco ACI. It provides a single point of control for configuring and managing the entire network fabric. Through its intuitive graphical user interface (GUI), administrators can define policies, allocate resources, and monitor network performance.

2. Nexus Switches:

Cisco Nexus switches form the backbone of the ACI fabric. These high-performance switches deliver ultra-low latency and high throughput, ensuring optimal data transfer between applications and the network. Nexus switches provide the necessary connectivity and intelligence to enable the automation and programmability features of Cisco ACI.

3. Application Network Profiles:

Application Network Profiles (ANPs) are a fundamental aspect of Cisco ACI. ANPs define the policies and characteristics required for specific applications or application groups. By encapsulating network, security, and quality of service (QoS) policies within ANPs, administrators can streamline the deployment and management of applications.

The Power of Network Automation

One of the most compelling aspects of Cisco ACI is its ability to automate network provisioning, configuration, and monitoring. Through the APIC’s powerful automation capabilities, network administrators can eliminate manual tasks, reduce human errors, and accelerate the deployment of applications. With Cisco ACI, organizations can achieve greater agility and operational efficiency, enabling them to rapidly adapt to evolving business needs.

Security and Microsegmentation with Cisco ACI

Security is a paramount concern for every organization. Cisco ACI addresses this by providing robust security features and microsegmentation capabilities. With microsegmentation, administrators can create granular security policies at the application level, effectively isolating workloads and preventing lateral movement of threats. Cisco ACI also integrates with leading security solutions, enabling seamless network enforcement and threat intelligence sharing.

Conclusion

Cisco ACI is a game-changer in the realm of network automation and infrastructure management. Its innovative architecture, coupled with powerful automation capabilities, empowers organizations to build agile, secure, and scalable networks. By leveraging Cisco ACI’s components, businesses can unlock new levels of efficiency, flexibility, and performance, ultimately driving growth and success in today’s digital landscape.

Docker Container Diagram

Container Based Virtualization

Container Based Virtualization

Container-based virtualization, or containerization, is a popular technology revolutionizing how we deploy and manage applications. In this blog post, we will explore what container-based virtualization is, why it is gaining traction, and how it differs from traditional virtualization techniques.

Container-based virtualization is a lightweight alternative to traditional methods such as hypervisor-based virtualization. Unlike virtual machines (VMs), which require a separate operating system (OS) instance for each application, containers share the host OS. This means containers can be more efficient regarding resource utilization and faster to start and stop.

Container-based virtualization, also known as operating system-level virtualization, is a lightweight virtualization method that allows multiple isolated user-space instances, known as containers, to run on a single host operating system. Unlike traditional virtualization techniques, which rely on hypervisors and full-fledged guest operating systems, containerization leverages the host operating system's kernel to provide resource isolation and process separation. This streamlined approach eliminates the need for redundant operating system installations, resulting in improved performance and efficiency.

Enhanced Portability: Containers encapsulate all the dependencies required to run an application, making them highly portable across different environments. Developers can package their applications with all the necessary libraries, frameworks, and configurations, ensuring consistent behavior regardless of the underlying infrastructure.

Scalability and Resource Efficiency: Containers enable efficient resource utilization by sharing the host's operating system and kernel. With their lightweight nature, containers can be rapidly provisioned, scaled up or down, and migrated across hosts, ensuring optimal resource allocation and responsiveness.

Isolation and Security: Containers provide isolation at the process level, ensuring that each application runs in its own isolated environment. This isolation prevents interference and minimizes security risks, making container-based virtualization an attractive choice for multi-tenant environments and cloud-native applications.

Container-based virtualization has gained significant traction across various industries and use cases. Some notable examples include:

Microservices Architecture: Containerization seamlessly aligns with the principles of microservices, allowing applications to be broken down into smaller, independent services. Each microservice can be encapsulated within its own container, enabling rapid development, deployment, and scaling.

DevOps and Continuous Integration/Continuous Deployment (CI/CD): Containers play a crucial role in modern DevOps practices, streamlining the software development lifecycle. With container-based virtualization, developers can easily package, test, and deploy applications across different environments, ensuring consistency and reducing deployment complexities.

Hybrid and Multi-Cloud Environments: Containers facilitate hybrid and multi-cloud strategies by abstracting away the underlying infrastructure dependencies. Applications can be packaged as containers and seamlessly deployed across different cloud providers or on-premises environments, enabling flexibility and avoiding vendor lock-in.

Highlights: Container Based Virtualization

What is Container-Based Virtualization?

Container-based virtualization, also known as operating-system-level virtualization, is a lightweight approach to virtualization that allows multiple isolated containers to run on a single host operating system. Unlike traditional virtualization techniques, containerization does not require a full-fledged operating system for each container, resulting in enhanced efficiency and performance.

Unlike traditional hypervisor-based virtualization, which relies on full-fledged virtual machines, containerization offers a more lightweight and efficient approach. Containers share the host OS kernel, resulting in faster startup times, reduced resource overhead, and improved overall performance.

Benefits:

Increased Resource Utilization: By sharing the host operating system, containers can efficiently use system resources, leading to higher resource utilization and cost savings.

Rapid Deployment and Scalability: Containers offer fast deployment and scaling capabilities, enabling developers to quickly build, deploy, and scale applications in seconds. This agility is crucial in today’s fast-paced development environments.

Isolation and Security: Containers provide a high level of isolation between applications, ensuring that one container’s activities do not affect others. This isolation enhances security and minimizes the risk of system failures.

Use Cases:

Microservices Architecture: Containerization plays a vital role in microservices architecture. Developers can independently develop, test, and deploy services by encapsulating each microservice within its container, increasing flexibility and scalability.

Cloud Computing: Container-based virtualization is widely used in cloud computing platforms. It allows users to deploy applications seamlessly across different cloud environments, making migrating and managing workloads easier.

DevOps and Continuous Integration/Continuous Deployment (CI/CD): Containerization is a crucial enabler of DevOps practices. With container-based virtualization, developers can ensure consistency in development, testing, and production environments, enabling smoother CI/CD workflows.

Container Networking

Docker Networks

Container networking refers to the communication and connectivity between containers within a containerized environment. It allows containers to interact with each other and external networks and services. Isolating network resources for each container enables secure and efficient data exchange.

In this section, we will explore some essential concepts in container networking:

1. Network Namespaces: Container runtimes use network namespaces to create isolated container network environments. Each container has its network namespace, providing separation and isolation.

2. Bridge Networks: Bridge networks serve as a virtual bridge connecting containers within the same host. They enable container communication by assigning unique IP addresses and facilitating network traffic routing.

3. Overlay Networks: Overlay networks connect containers across multiple hosts or nodes in a cluster. They provide a seamless communication layer, allowing containers to communicate as if they were on the same network.

Docker Default Networking

Docker default networking is an essential feature that enables containerized applications to communicate with each other and the outside world. By default, Docker provides three types of networks: bridge, host, and none. These networks serve different purposes and have distinct characteristics.

The bridge network is Docker’s default networking mode. It creates a virtual network interface on the host machine, allowing containers to communicate with each other through this bridge. By default, containers connected to the bridge network can reach each other using their IP addresses.

The host network mode allows containers to bypass the isolation provided by Docker networking and use the host machine’s network directly. When a container uses the host network, it shares the same network namespace as the host, resulting in improved network performance but sacrificing the container’s isolation.

The non-network mode completely isolates the container from network access. Containers using this mode have no network interfaces and cannot communicate with the outside world or other containers. This mode is useful for scenarios where network access is not required.

Docker provides various options to customize default networking behavior. You can create custom bridge networks, define IP ranges, configure DNS resolution, and map container ports to host ports. Understanding these configuration options empowers you to design networking setups that align with your application requirements.

Application Landscape Changes

The application landscape has changed from a monolithic design to a design consisting of microservices. Today, applications are constantly developed. Patches usually patch only certain parts of the application, and the entire application is built from loosely coupled components instead of existing tightly coupled ones. The entire application stack is broken into components and spread over multiple servers and locations, all requiring cross-communication. For example, users connect to a presentation layer, the presentation layer then connects to some shopping cart, and the shopping cart connects to a catalog library.

These components are potentially stored on different servers, maybe different data centers. The application is built from several small parts, known as microservices. Each component or microservice can now be put into a lightweight container—a scaled-down VM. VMware and KVM are virtualization systems that allow you to run Linux kernels and operating systems on top of a virtualized layer, commonly known as a hypervisor. Because each VM is based on its operating system kernel in its memory space, this approach provides extreme isolation between workloads.

Containers differ fundamentally from shared kernel systems since they implement isolation between workloads entirely within the kernel. This is called operating system virtualization.

A major advantage of containers is resource efficiency since each isolated workload does not require a whole operating system instance. Sharing a kernel reduces the amount of indirection between isolated tasks and their real hardware. The kernel only manages a container when a process is running inside a container. Unlike a virtual machine, an actual machine has no second layer. The process would have to bounce into and out of privileged mode twice when calling the hardware or hypervisor in a VM, significantly slowing down many operations.

Traditional Deployment Models

So, how do containers facilitate virtualization? Traditional application deployment was based on a single-server approach. As a result, one application was installed per physical server, wasting server resources, and components such as RAM and CPU were never fully utilized. There was also considerable vendor lock-in, making moving applications from one hardware vendor to another hard.

Then, the world of hypervisor-based virtualization was introduced, and the concept of a virtual machine (VM) was born. Soon after, we had container-based applications. Container-based virtualization introduced container networking, and new principles arose for security around containers, specifically, Docker container security.

container security

Introducing hypervisors

We still deployed physical servers but introduced hypervisors on the physical host, enabling the installation of multiple VMs on a single server. Each VM is isolated from its operating system. Hypervisor-based virtualization introduced better resource pooling as one physical server could now be divided into multiple VMs, each hosting a different application type. This was years better than single-server deployments and opened the doors to open networking. 

The VM deployment approach increased agility and scalability, as applications within a VM are scaled by simply spinning up more VMs on any physical host. While hypervisor-based virtualization was a step in the right direction, a guest operating system for each application is pretty intensive. Each VM requires RAM, CPU, storage, and an entire guest OS, all-consuming resources.

Introducing Virtualization

Another advantage of virtualization is the ability to isolate applications or services. Each virtual machine operates independently, with its resources and configurations. This enhances security and stability, as issues in one virtual machine do not affect others. It also allows for easy testing and development, as virtual machines can be quickly created and discarded.

Virtualization also offers improved disaster recovery and business continuity. By encapsulating the entire virtual machine, including its operating system, applications, and data, into a single file, organizations can quickly back up, replicate, and restore virtual machines. This ensures that critical systems and data are protected and can rapidly recover during a failure or disaster.

Furthermore, virtualization enables workload balancing and dynamic resource allocation. Virtual machines can be dynamically migrated between physical servers to optimize resource utilization and performance. This allows for better utilization of computing resources and the ability to respond to changing workload demands.

Container Orchestration

**What is Google Kubernetes Engine?**

Google Kubernetes Engine is a managed environment for deploying, managing, and scaling containerized applications using Google infrastructure. GKE is built on Kubernetes, an open-source container orchestration system that automates the deployment, scaling, and management of containerized applications. With GKE, developers can focus on building applications without worrying about the complexities of managing the underlying infrastructure.

**The Benefits of Container-Based Virtualization**

Container-based virtualization is a game-changer in the world of cloud computing. Unlike traditional virtual machines, containers are lightweight and share the host system’s kernel, leading to faster start-up times and reduced overhead. GKE leverages this technology to offer seamless scaling and efficient resource utilization. This means businesses can run more applications on fewer resources, reducing costs and improving performance.

**GKE Features: What Sets It Apart?**

One of GKE’s standout features is its ability to auto-scale, which ensures that applications can handle varying loads by automatically adjusting the number of running instances. Additionally, GKE provides robust security features, including vulnerability scanning and automated updates, safeguarding your applications from potential threats. The integration with other Google Cloud services also enhances its functionality, offering a comprehensive suite of tools for developers.

**Getting Started with GKE**

For businesses looking to harness the potential of Google Kubernetes Engine, getting started is straightforward. Google Cloud provides extensive documentation and tutorials, making it easy for developers to deploy their first applications. With its intuitive user interface and powerful command-line tools, GKE simplifies the process of managing containerized applications, even for those new to Kubernetes.

Google Kubernetes EngineUnderstanding Docker Swarm

Docker Swarm provides native clustering and orchestration capabilities for Docker. It allows you to create and manage a swarm of Docker nodes, forming a single virtual Docker host. By leveraging the power of swarm mode, you can seamlessly deploy and manage containers across a cluster of machines, enabling high availability, fault tolerance, and scalability.

One of Docker Swarm’s key features is its simplicity. With just a few commands, you can initialize a swarm, join nodes to the swarm, and deploy services across the cluster. Additionally, Swarm provides load balancing, automatic container placement, rolling updates, and service discovery, making it an ideal choice for managing and scaling containerized applications.

Scaling Services with Docker Swarm

To create a Docker Swarm, you need at least one manager node and one or more worker nodes. The manager node acts as the central control plane, handling service orchestration and managing the swarm’s state. On the other hand, Worker nodes execute the tasks assigned to them by the manager. Setting up a swarm allows you to distribute containers across the cluster, ensuring efficient resource utilization and fault tolerance.

One of Docker Swarm’s significant benefits is its ability to deploy and scale services effortlessly. With a simple command, you can create a service, specify the number of replicas, and let Swarm distribute the workload across the available nodes. Scaling a service is as simple as updating the desired number of replicas, and Swarm will automatically adjust the deployment accordingly, ensuring high availability and efficient resource allocation.

Docker Swarm is a native clustering and orchestration solution for Docker. It allows you to create and manage a swarm of Docker nodes, enabling the deployment and scaling of containers across multiple machines. With its simplicity and ease of use, Docker Swarm is an excellent choice for those looking to dive into container orchestration without a steep learning curve.

The Power of Kubernetes

Kubernetes, often called “K8s,” is an open-source container orchestration platform developed by Google. It provides a robust and scalable solution for managing containerized applications. With its advanced features, such as automatic scaling, load balancing, and self-healing capabilities, Kubernetes has gained widespread adoption in the industry.

Example Technology: Virtual Switching 

Understanding Open vSwitch

Open vSwitch, called OVS, is an open-source virtual switch that efficiently creates and manages virtual networks. It operates at the data link layer of the networking stack, enabling seamless communication between virtual machines, containers, and physical network devices. With extensibility in mind, OVS offers a wide range of features contributing to its popularity and widespread adoption.

– Flexible Network Topologies: One of the standout features of Open vSwitch is its ability to support a variety of network topologies. Whether a simple flat network or a complex multi-tiered architecture, OVS provides the flexibility to design and deploy networks that suit specific requirements. This level of adaptability makes it a preferred choice for cloud service providers, data centers, and enterprises seeking dynamic network setups.

– Virtual Network Overlays: Open vSwitch enables virtual network overlays, allowing multiple virtual networks to coexist and operate independently on the same physical infrastructure. By leveraging technologies like VXLAN, GRE, and Geneve, OVS facilitates the creation of isolated network segments that are transparent to the underlying physical infrastructure. This capability simplifies network management and enhances scalability, making it an ideal solution for cloud environments.

– Flow-based Forwarding: Flow-based forwarding is a powerful mechanism provided by Open vSwitch. It allows for fine-grained control over network traffic by defining flows based on specific criteria such as source/destination IP addresses, ports, protocols, and more. This granular control enables efficient traffic steering, load balancing, and network monitoring, enhancing performance and security.

Controlling Security

Understanding SELinux

SELinux, which stands for Security-Enhanced Linux, is a security framework built into the Linux kernel. It provides a fine-grained access control mechanism beyond traditional discretionary access controls (DAC). SELinux implements mandatory access controls (MAC) based on the principle of least privilege. This means that processes and users are granted only the bare minimum permissions required to perform their tasks, reducing the potential attack surface.

Container-based virtualization has revolutionized the way applications are deployed and managed. However, it also introduces new security challenges. This is where SELinux shines. By enforcing strict access controls on container processes and limiting their capabilities, SELinux helps prevent unauthorized access and potential exploits. It adds an extra layer of protection to the container environment, making it more resilient against attacks.

Related: You may find the following helpful post before proceeding to how containers facilitate virtualization.

  1. Docker Default Networking 101
  2.  Kubernetes Networking 101
  3. Kubernetes Network Namespace
  4. WAN Virtualization
  5. OVS Bridge
  6. Remote Browser Isolation

Container Based Virtualization

The Traditional World

Before we address how containers facilitate virtualization, let’s address the basics. In the past, we could solely run one application per server. However, the open-systems world of Windows and Linux didn’t have the technologies to safely and securely run multiple applications on the same server.

So, whenever we needed a new application, we would buy a new server. We had the virtual machine (VM) to solve the waste of resources. With the VM, we had a technology that permitted us to safely and securely run applications on a single server. Unfortunately, the VM model also has additional challenges.

Migrating VMs

For example, VMs are slow to boot, and portability isn’t great — migrating and moving VM workloads between hypervisors and cloud platforms is more complicated than it needs to be. All of these factors drove the need for new container technology with container virtualization.

How do containers facilitate virtualization? We needed a lightweight tool without losing the scalability and agility benefits of the VM-based application approach. The lightweight tool is container-based virtualization, and Docker is at the forefront. The container offers a similar capability to object-oriented programming. It lets you build composable modular building blocks, making it easier to design distributed systems.

Docker Container Diagram
Diagram: Docker Container. Source Docker.

Container Networking

In the following example, we have one Docker host. We can list the available networks for these Docker hosts with the command docker network ls. These are not WAN or VPN networks; they are only Docker networks.

Docker networks are virtual networks that allow containers to communicate with each other and the outside world. They provide isolation, security, and flexibility to manage network traffic flow between containers. By default, when you create a new Docker container, it is connected to a default bridge network, which allows communication with other containers on the same host.

Notice the subnets assigned of 172.17.0.0/16. So, the default gateway ( exit point) is set to the docker0 bridge.

Docker networking
Diagram: Docker networking

Types of Docker Networks:

Docker offers various types of networks, each serving a specific purpose:

1. Bridge Network:

The bridge network is the default network that enables communication between containers on the same host. Containers connected to the bridge network can communicate using IP addresses or container names. It provides a simple way to connect containers without exposing them to the outside world.

2. Host Network:

In the host network mode, a container shares the network stack with the host, using its network interface directly. This mode provides maximum network performance as no network address translation (NAT) is involved. However, it also means the container is directly exposed to the host’s network, potentially introducing security risks.

3. Overlay Network:

The overlay network allows containers to communicate across multiple Docker hosts, even in different physical or virtual networks. It achieves this by encapsulating network packets and routing them to the appropriate destination. Overlay networks are essential for creating distributed and scalable applications.

4. Macvlan Network:

The Macvlan network mode allows containers to have MAC addresses and appear as separate devices. This mode is useful when assigning IP addresses to containers and making them accessible from the external network. It is commonly used when containers must be treated as physical devices.

5. None Network:

The non-network mode isolates a container from all networking. It effectively disables all networking capabilities and prevents the container from communicating with other containers or the outside world. This mode is typically used when networking is not required or desired.

 Lab Guide on Container Networking

You can attach as many containers as you like to a bridge. They will be assigned IP addresses within the same subnet, meaning they can communicate by default. You can have a container with two Ethernet interfaces ( virtual interfaces ) connected to two different bridges on the same host and have connectivity to two networks simultaneously.

Also, remember that the scope is local when you are doing this, and even if the docker hosts are on the same underlying network but with different hosts, they won’t have IP reachability. In this case, you may need a VXLAN overlay network to connect containers on different docker hosts.

inspecting container networks
Diagram: Inspecting container networks

Container-based Virtualization

One critical benefit of container-based virtualization is its portability. Containers encapsulate the application and all its dependencies, allowing it to run consistently across different environments, from development to production. This portability eliminates the “it works on my machine” problem and makes it easier to maintain and scale applications.

Scalability

Another advantage of containerization is its scalability. Containers can be easily replicated and distributed across multiple hosts, making it straightforward to scale applications horizontally. Furthermore, container orchestration platforms, like Kubernetes, provide automated management and scaling of containers, simplifying the deployment and management of complex applications.

Security

Security is crucial to any virtualization technology, and container-based virtualization is no exception. Containers provide isolation between applications, preventing them from interfering with each other. However, it is essential to note that containers share the same kernel as the host OS, which means a compromised container can potentially impact other containers. Proper security measures, such as regular updates and vulnerability scanning, are essential to ensure the security of containerized applications.

Tooling

Container-based virtualization also offers various tools and platforms for application development and deployment. Docker, for example, is a popular containerization platform that provides a user-friendly interface for building, running, and managing containers. It simplifies container image creation and enables developers to package their applications and dependencies.

Understanding Kubernetes Networking Architecture

Kubernetes networking architecture comprises several crucial components that enable seamless communication between pods, services, and external resources. The fundamental building blocks of Kubernetes networking include pods, nodes, containers, and the Container Network Interface (CNI). r.

Network security is paramount to any Kubernetes deployment. Network policies provide a powerful tool to control ingress and egress traffic, enabling fine-grained access control between pods. Kubernetes has the concept of network policies and demonstrates how to define and enforce them to enhance the security posture of your Kubernetes cluster.  

Applications of Container-Based Virtualization:

1. DevOps and Continuous Integration/Continuous Deployment (CI/CD): Containerization enables developers to package applications, libraries, and configurations into portable and reproducible containers. This simplifies the deployment process and ensures consistency across different environments, facilitating faster software delivery.

2. Microservices Architecture: Container-based virtualization aligns well with the microservices architectural pattern. Organizations can develop, deploy, and scale each service independently using containers by breaking down complex applications into more minor, loosely coupled services. This approach enhances modularity, scalability, and fault tolerance.

3. Hybrid Cloud and Multi-Cloud Environments: Containers provide a unified platform for deploying applications across hybrid and multi-cloud environments. With container orchestration tools, organizations can leverage the benefits of multiple cloud providers while ensuring consistent deployment and management practices.

How do containers facilitate virtualization?

  • Container-Based Applications

Now, we have complex distributed software stacks based on microservices. Its base consists of loosely coupled components that may change and software that runs on various hardware, including test machines, in-house clusters, cloud deployments, etc. The web front end may include the following:

  • Ruby + Rail.
  • API endpoints with Python 2.7.
  • Stack website with Nginx.
  • A variety of databases.

We have a very complex stack on top of various hardware devices. While the traditional monolithic application will likely remain for some time, containers still exhibit the use case to modernize the operational model for conventional stacks. Both monolithic and container-based applications can live together.

The application’s complexity, scalability, and agility requirements have led us to the market of container-based virtualization. Container-based virtualization uses the host’s kernel to run multiple guest instances. Now, we can run multiple guest instances (containers), and each container will have its root file system, process, and network stack.

Containers allow you to package an application with all its parts in an isolated environment. They are a complete abstraction and do not need to run dependencies on the hosts. Docker, a type of container (first based on Linux Containers but now powered by runC), separates the application from infrastructure using container technologies. 

Similar to how VMs separate the operating system from bare metal, containers let you build a layer of isolation in software that reduces the burden of human communication and specific workflows. An excellent way to understand containers is to accept that they are not VMs—they are simple wrappers around a single Unix process. Containers contain everything they need to run (runtime, code, libraries, etc.).

Linux kernel namespaces

Isolation or variants of isolation have been around for a while. We have mount namespacing in 2.4 kernels and userspace namespacing in 3.8. These technologies allow the kernel to create partitions and isolate PIDs. Linux containers (Lxc) started in 2008, and Docker was introduced in Jan 2013, with a public release of 1.0 in 2014. We are now at version 1.9, which has some new networking enhancements.

Docker uses Linux kernel namespaces and control groups, providing an isolated workspace, which offers the starting grounds for the Docker security options. Namespaces offer an isolated workspace that we call a container. They help us fool the container.

We have PID for process isolation, MOUNT for storage isolation, and NET for network-level isolation. The Linux network subsystem has the correct information for additional Linux network information.

Container-based application: Container operations

Containers use schedulers. A scheduler starts containers on the correct host and then connects them. It also needs to manage container failover and handle container scalability when there is too much data to process for a single instance. Popular container schedulers include Docker Swarm, Apache Mesos, and Google Kubernetes.

The correct host is selected depending on the type of scheduler used. For example, Docker Swarm will have three strategies: spread, binpack, and random. Spread means node selection is based on the fewest containers, disregarding their states. Binpack selection is based on hosts with minimum resources, i.e., the most packed. Finally, random strategy selections are chosen randomly.

Containers are quick to start.

How do containers facilitate virtualization? First, they are quick. Starting a container is much faster than starting a VM—lightweight containers can be started in as little as 300ms. Initial tests on Docker revealed that a newly created container from an existing image takes up only 12 kilobytes of disk space.

A VM could take up thousands of megabytes. The container is lightweight, as its references point to a layered filesystem image. Container deployment is also swift and network-efficient.

Fewer data needs to travel across the network and storage fabrics. Elastic applications that have frequent state changes can be built more efficiently. Both Docker and Linux containers fundamentally change application consumption. 

As a side note, not all workloads are suitable for containers, and heavy loads like databases are put into VMs to support multi-cloud environments. 

Docker networking

Docker networking is an essential aspect of containerization that allows containers to communicate with each other and external networks. In this document, we will explore the different networking options available in Docker and how they can facilitate seamless communication between containers.

By default, Docker provides three networking options: bridge, host, and none. The bridge network is the default network created when Docker is installed. It allows containers to communicate with each other using IP addresses. Containers within the same bridge network can communicate with each other directly without the need for port mapping.

As the name suggests, the host network allows containers to share the network namespace with the host system. This means containers using the host network can directly access the host system’s interfaces. This option is helpful for scenarios where containers must bind to specific network interfaces on the host.

On the other hand, the non-network option completely isolates the container from the network. Containers using the none network cannot communicate with other containers or external networks. This option is useful when running a container in complete isolation.

Creating custom networks

In addition to these default networking options, Docker also provides the ability to create custom networks. Custom networks allow containers to communicate with each other, even if they are not in the same network namespace. Custom networks can be made using the `docker network create` command, specifying the desired driver (bridge, overlay, macvlan, etc.) and any additional options.

One of the main benefits of using custom networks is the ability to define network-level access control. Docker provides the ability to define network policies using network labels. These labels can control which containers can communicate with each other and which ports are accessible.

Closing Points on Docker networking

Networking is very different in Docker than what we are used to. Networks are domains that interconnect sets of containers. So, if you give access to a network, you can access all containers. However, you must specify rules and port mapping if you want external access to other networks or containers.

A driver backs every network, be it a bridge or overlay driver. These Docker-based drivers can be swapped out with any ecosystem driver. The team at Docker views them as pluggable batteries.

Docker utilizes the concept of scope—local (default) and Global. The local scope is a local network, and the global scope has visibility across the entire cluster. If your driver is a global scope driver, your network belongs to a global scope. A local scope driver corresponds to the local scope.

Containers and Microsegmentation

Microsegmentation is a security technique that divides a network into smaller, isolated segments, allowing organizations to create granular security policies. This approach provides enhanced control and visibility over network traffic, preventing lateral movement and limiting the impact of potential security breaches.

Microsegmentation offers organizations a proactive approach to network security, allowing them to create an environment more resilient to cyber threats. By implementing microsegmentation, organizations can enhance their security posture, minimize the risk of lateral movement, and protect their most critical assets. As the cyber threat landscape continues to evolve, microsegmentation is an effective strategy to safeguard network infrastructure in an increasingly interconnected world.

  • Docker and Micro-segmentation

Docker 0 is the default bridge. They have now extended into bundles of multiple networks, each with independent bridges. Different bridges cannot directly talk to each other. It is a private, isolated network offering micro-segmentation and multi-tenancy features.

The only way for them to communicate is via host namespace and port mapping, which is administratively controlled. Docker multi-host networking is a new feature in 1.9. A multi-host network comprises several docker hosts that form a cluster.

Several containers in each host form the cluster by pointing to the same KV (example -zookeeper) store. The KV store that you point to defines your cluster. Multi-host networking enables the creation of different topologies and lets the container belong to several networks. The KV store may also be another container, allowing you to stay in a 100% container world.

Final points on container-based virtualization

In recent years, container-based virtualization has become famous for deploying and managing applications. Unlike traditional virtualization, which relies on hypervisors to run multiple virtual machines on a single physical server, container-based virtualization leverages lightweight, isolated containers to run applications.

So, what exactly is container-based virtualization, and why is it gaining traction in the technology industry? In this blog post, we will explore the concept of container-based virtualization, its benefits, and how it differs from traditional virtualization.

Operating system-level virtualization

Container-based virtualization, also known as operating system-level virtualization, is a form of virtualization that allows multiple containers to run on a single operating system kernel. Each container is isolated from the others, ensuring that applications and their dependencies are encapsulated within their runtime environment. This isolation eliminates application conflicts and provides a consistent environment across deployment platforms.

Docker default networking 101
Diagram: Docker default networking 101

Critical advantages of container virtualization

One critical advantage of container-based virtualization is its lightweight nature. Containers are designed to be portable and efficient, allowing for rapid application deployment and scaling. Unlike virtual machines, which require an entire operating system to run, containers share the host operating system kernel, reducing resource overhead and improving performance.

Another benefit of container-based virtualization is its ability to facilitate microservices architecture. By breaking down applications into more minor, independent services, containers enable developers to build and deploy applications more efficiently. Each microservice can be encapsulated within its container, making it easier to manage and update without impacting other application parts.

Greater flexibility and scalability

Moreover, container-based virtualization offers greater flexibility and scalability. Containers can be easily replicated and distributed across hosts, allowing for seamless horizontal scaling. This ability to scale quickly and efficiently makes container-based virtualization ideal for modern, dynamic environments where applications must adapt to changing demands.

Container virtualization is not a complete replacement.

It’s important to note that container-based virtualization is not a replacement for traditional virtualization. Instead, it complements it. While traditional virtualization is well-suited for running multiple operating systems on a single physical server, container-based virtualization is focused on maximizing resource utilization within a single operating system.

In conclusion, container-based virtualization has revolutionized application deployment and management. Its lightweight nature, isolation capabilities, and scalability make it a compelling choice for modern software development and deployment. As technology continues to evolve, container-based virtualization will likely play a significant role in shaping the future of application deployment.

Container-based virtualization has transformed how we develop, deploy, and manage applications. Its lightweight nature, scalability, portability, and isolation capabilities make it an attractive choice for modern software development. By adopting containerization, organizations can achieve greater efficiency, agility, and cost savings in their software development and deployment processes. As container technologies continue to evolve, we can expect even more exciting possibilities in virtualization.

Google Cloud Data Centers

### What is a Cloud Service Mesh?

A cloud service mesh is essentially a network of microservices that manage and optimize communication between application components. It operates behind the scenes, abstracting the complexity of inter-service communication from developers. With a service mesh, you get a unified way to secure, connect, and observe microservices without changing the application code.

### Key Benefits of Using a Cloud Service Mesh

#### Improved Observability

One of the standout features of a service mesh is enhanced observability. By providing detailed insights into traffic flows, latencies, error rates, and more, it allows developers to easily monitor and debug their applications. Tools like Prometheus and Grafana can integrate with service meshes to offer real-time metrics and visualizations.

#### Enhanced Security

Security in a microservices environment can be complex. A cloud service mesh simplifies this by providing built-in security features such as mutual TLS (mTLS) for encrypted service-to-service communication. This ensures that data remains secure and tamper-proof as it travels across the network.

#### Simplified Traffic Management

With a service mesh, traffic management becomes a breeze. Advanced routing capabilities allow for blue-green deployments, canary releases, and circuit breaking, making it easier to roll out new features and updates without downtime. This level of control ensures that applications remain resilient and performant.

### The Role of Container Networking

Container networking is a critical aspect of cloud-native architectures, and a service mesh enhances it significantly. By decoupling the networking logic from the application code, a service mesh provides a standardized way to manage communication between containers. This not only simplifies the development process but also ensures consistent network behavior across different environments.

### Popular Cloud Service Mesh Solutions

Several service mesh solutions have emerged as leaders in the industry. Notable mentions include:

– **Istio:** One of the most popular service meshes, Istio offers a robust set of features for traffic management, security, and observability.

– **Linkerd:** Known for its simplicity and performance, Linkerd focuses on providing essential service mesh capabilities with minimal overhead.

– **Consul Connect:** Developed by HashiCorp, Consul Connect integrates seamlessly with other HashiCorp tools, offering a comprehensive solution for service discovery and mesh networking.

Summary: Container Based Virtualization

In recent years, container-based virtualization has emerged as a game-changer in technology. This innovative approach offers numerous advantages over traditional virtualization methods, providing enhanced flexibility, scalability, and efficiency. This blog post delved into container-based virtualization, exploring its key concepts, benefits, and real-world applications.

Understanding Container-Based Virtualization

Container-based virtualization, or operating system-level virtualization, is a lightweight alternative to traditional hypervisor-based virtualization. Unlike the latter, where each virtual machine runs on a separate operating system, containerization allows multiple containers to share the same OS kernel. This approach eliminates redundant OS installations, resulting in a more efficient and resource-friendly system.

Benefits of Container-Based Virtualization

2.1 Enhanced Performance and Efficiency

Containers are lightweight and have minimal overhead, enabling faster deployment and startup times than traditional virtual machines. Additionally, the shared kernel architecture reduces resource consumption, allowing for higher density and better utilization of hardware resources.

2.2 Improved Scalability and Portability

Containers are highly scalable, allowing applications to be easily replicated and deployed across various environments. With container orchestration platforms like Kubernetes, organizations can effortlessly manage and scale their containerized applications, ensuring seamless operations even during periods of high demand.

2.3 Isolation and Security

Containers provide isolation between applications and the host operating system, enhancing security and reducing the risk of malicious attacks. Each container operates within its own isolated environment, preventing interference from other containers and mitigating potential vulnerabilities.

Section 3: Real-World Applications

3.1 Microservices Architecture

Container-based virtualization aligns perfectly with the microservices architectural pattern. By breaking down applications into more minor, decoupled services, organizations can leverage the agility and scalability containers offer. Each microservice can be encapsulated within its container, enabling independent development, deployment, and scaling.

3.2 DevOps and Continuous Integration/Continuous Deployment (CI/CD)

Containerization has become a cornerstone of modern DevOps practices. By packaging applications and their dependencies into containers, development teams can ensure consistent and reproducible environments across the entire software development lifecycle. This facilitates seamless integration, testing, and deployment processes, leading to faster time-to-market and improved collaboration between development and operations teams.

Conclusion:

Container-based virtualization has revolutionized how we build, deploy, and manage applications. Its lightweight nature, scalability, and efficient resource utilization make it an ideal choice for modern software development and deployment. As organizations continue to embrace digital transformation, containerization will undoubtedly play a crucial role in shaping the future of technology.