microservices development

Microservices Observability

Monitoring Microservices

In the world of software development, microservices have gained significant popularity due to their scalability, flexibility, and ease of deployment. However, as the complexity of microservices architectures grows, so does the need for robust observability practices. In this blog post, we will delve into the realm of microservices observability, exploring its importance, key components, and best practices.

Observability is the ability to gain insights into the internal workings of a system through monitoring and instrumentation. In the context of microservices, observability allows developers and operators to understand how individual services interact, diagnose issues, and ensure optimal performance. By employing observability techniques, organizations can effectively manage the complexity that arises from a distributed architecture.

To achieve comprehensive observability in a microservices environment, several key components come into play. These include:

Distributed Tracing: Distributed tracing enables the tracking of requests as they flow through various microservices. It provides a holistic view of the request flow, allowing for performance analysis, bottleneck identification, and troubleshooting.

Logging and Log Aggregation: Logging plays a crucial role in capturing important events and data from microservices. By aggregating logs from different services into a central location, it becomes easier to monitor and analyze system behavior, detect anomalies, and perform root cause analysis.

Metrics and Monitoring: Metrics provide quantitative data about the behavior and performance of microservices. Monitoring these metrics in real-time helps identify trends, set performance baselines, and trigger alerts when predefined thresholds are breached.

To ensure effective observability in microservices architectures, organizations should consider the following best practices:

Instrumentation: Properly instrumenting microservices with observability tools and frameworks is essential. This includes adding code snippets to capture relevant data, such as request/response times, error rates, and resource utilization.

Standardization: Establishing common standards for logging, tracing, and metrics across microservices simplifies the observability process. Adopting industry-standard formats and protocols enables seamless integration and interoperability between different observability tools.

Automation: Automating observability processes, such as log aggregation, metric collection, and alerting, reduces manual effort and ensures consistent monitoring across the entire microservices ecosystem. Leveraging automation tools and frameworks can streamline observability workflows.

Microservices observability is a critical aspect of managing complex distributed architectures. By understanding the key components and implementing best practices, organizations can gain valuable insights into the behavior and performance of their microservices. Embracing observability empowers developers and operators to proactively identify and resolve issues, optimize performance, and deliver reliable and scalable microservices-based applications.

Highlights: Monitoring Microservices

**Understanding Microservices Observability**

Before we dive deeper, let’s establish a clear understanding of what microservices observability entails. Observability refers to gaining insights into a system’s internal state based on its external outputs. In microservices, observability involves collecting and analyzing data from various sources, such as logs, metrics, and traces, to understand the system’s behavior and performance comprehensively.

Key Points:

Focusing on key components that enable comprehensive monitoring and troubleshooting is crucial to achieving effective observability. These components include logging, metrics, and distributed tracing. Logging provides a detailed record of events and system activities, while metrics measure quantitative system performance. Distributed tracing allows tracking requests propagating through multiple microservices, giving valuable insights into the latency and dependencies between services.

Numerous tools and technologies have emerged to support the observability of microservices. Prominent examples include popular open-source solutions like Prometheus, Grafana, and Jaeger. These tools provide capabilities for collecting, storing, visualizing, and analyzing observability data. Additionally, cloud-based platforms like AWS CloudWatch and Azure Monitor offer managed services that simplify the setup and management of observability infrastructure.

Microservices monitoring is suitable for known patterns that can be automated, while microservices observability is suitable for detecting unknown and creative failures. Microservices monitoring is a critical part of successfully managing a microservices architecture. It involves tracking each microservice’s performance to ensure there are no bottlenecks in the system and that the microservices are running optimally.

The Need for Microservices Observability:

1. Obfuscation: When creating microservices, your application becomes more distributed, the coherence of failures decreases, and we live in a world of unpredictable failure mode—also, the distance between cause and effect increases. For example, an outage at your cloud provider’s blob storage could cause huge cascading latency for everyone. In today’s environment, we have new cascading problems.

2. Inconsistency and highly independent: Distributed applications might be reliable, but the state of individual components can be much less consistent than in monolithic or non-distributed applications, which have elementary and well-known failure modes. In addition, each element of a distributed application is designed to be highly independent, and each component can be affected by different upstream and downstream components.

3. Decentralization: How do you look for service failures when a thousand copies of a service may run on hundreds of hosts? How do you correlate those failures so you can understand what’s going on?

Cloud Monitoring: Compute Engine & Ops Agent

What is an Ops Agent?

Ops Agent is a monitoring agent provided by Google Cloud that allows users to collect and export monitoring data from their Compute Engine instances. It acts as a bridge between your virtual machines and the Google Cloud Monitoring service, enabling real-time visibility into the health and performance of your infrastructure.

Ops Agent Advantages:

Ops Agent offers several advantages when it comes to monitoring a Compute Engine. Firstly, it provides a unified solution for collecting metrics, logs, and events from your instances. This means you can easily access and analyze all the necessary data in one centralized location. Additionally, Ops Agent offers resource-efficient monitoring, minimizing the impact on your instances’ performance while providing accurate and timely information.

Implementing Ops Agent:

To start monitoring your Compute Engine instances with Ops Agent, you need to follow a few simple steps. First, ensure that you have the necessary permissions and enable the necessary APIs in your Google Cloud project. Then, install Ops Agent on your instances using the provided installation script or by creating a custom image with Ops Agent pre-installed. Finally, configure the agent to collect the desired metrics, logs, and events based on your monitoring requirements.

**Tools of the past: Log data and series statistics**

Traditionally, microservices monitoring has boiled down to two types of telemetry data: log data and time series statistics. Time series data is also known as metrics, as to make sense of a metric, you need to view a period. However, as we broke the software into tiny, independently operated services and distributed those fragmented services, the logs, and metrics we captured told you very little of what was happening to the critical path.

Understanding the critical path is the most important thing, as this is what the customer is experiencing. Looking at a single stack trace or watching CPU and memory utilization on predefined graphs and dashboards is insufficient. As software scales in-depth but breadth, telemetry data like logs and metrics alone don’t provide clarity; you must quickly identify production problems.

Components – Microservices Monitoring

Metrics 

A. Metrics: This includes tracking metrics such as response time, throughput, and error rate. This information can be used to identify performance issues or bottlenecks. By collecting and interpreting metrics, organizations gain valuable insights into their microservices-based applications, enabling them to make informed decisions and proactively address potential problems.

Logs 

B. Logs: Logging allows administrators to track requests, errors, and exceptions, which can provide deeper insight into the performance of microservices architecture. Logs provide a unique perspective by capturing valuable information about system events and activities. Logs act as a breadcrumb trail, documenting the inner workings of microservices.

One can detect anomalies, identify bottlenecks, and troubleshoot errors effectively by analyzing logs. Capturing log data from each microservice and centralizing it in a log management system allows comprehensive monitoring across the entire architecture. Logs can reveal valuable insights such as response times, error rates, and resource usage, empowering teams to make data-driven decisions.

Tracing 

C. Tracing: Tracing provides a timeline of events within the system. This can be used to identify the source of issues or to track down errors. In microservices, tracing refers to capturing and analyzing the flow of requests as they traverse through different services. By tracing requests, we can gain valuable insights into the performance and behavior of our microservices architecture. From identifying latency issues to detecting errors and bottlenecks, tracing provides a holistic view of the entire request journey.

Alerts

D. Alerts: Alerts notify administrators when certain conditions are met. For example, administrators can be alerted if a service is down or performance is degrading . Configuring alerting rules is a critical step in microservices monitoring. It involves defining thresholds or conditions that, when breached, trigger alerts. These rules should be set based on the specific requirements of each microservice, considering factors like expected response time, error rates, or resource thresholds. Additionally, it’s essential to determine the appropriate severity levels for different alerts.

Finally, it is essential to note that microservices monitoring is not just limited to tracking performance. It can also detect security vulnerabilities and provide insights into the architecture.

By leveraging microservices monitoring, organizations can ensure that their microservices architecture runs smoothly and that any issues are quickly identified and resolved. This can help ensure the organization’s applications remain reliable and secure.

Example Product: Cisco AppDynamics

### Why Choose Cisco AppDynamics?

Cisco AppDynamics stands out in the crowded APM market for several compelling reasons. First, it offers end-to-end visibility into your application’s performance, from the end-user experience down to the underlying infrastructure. This comprehensive view allows you to pinpoint issues quickly and resolve them before they impact your users. Additionally, AppDynamics employs machine learning algorithms to detect anomalies and provide actionable insights, enabling proactive problem-solving.

### Key Features of Cisco AppDynamics

One of the standout features of AppDynamics is its ability to automatically map your application’s topology, giving you a clear picture of how different components interact. This dynamic mapping is invaluable for troubleshooting and optimizing your application. Another key feature is its robust alerting system, which notifies you of performance issues in real-time, allowing for immediate intervention. Furthermore, AppDynamics offers detailed analytics and reporting capabilities, helping you make data-driven decisions to improve your application’s performance.

### Integrations and Extensibility

Cisco AppDynamics is designed to integrate seamlessly with a wide range of technologies and platforms, making it a versatile tool for any IT environment. Whether you’re using cloud services like AWS or Azure, container orchestration platforms like Kubernetes, or traditional on-premise infrastructure, AppDynamics has you covered. The platform also supports custom extensions, allowing you to tailor it to your specific needs and workflows.

### Real-World Use Cases

Many organizations have successfully leveraged Cisco AppDynamics to achieve significant improvements in their application performance and user experience. For instance, a leading e-commerce company used AppDynamics to identify and resolve a critical bottleneck in their checkout process, resulting in a 20% increase in conversion rates. Similarly, a financial services firm utilized AppDynamics’ machine learning capabilities to predict and prevent potential outages, ensuring uninterrupted service for their customers.

Example: What are VPC Flow Logs?

VPC Flow Logs provide detailed information about the IP traffic flowing through your Virtual Private Cloud (VPC). They capture metadata about each network flow, including source and destination IP addresses, ports, protocol, packet and byte counts, and more. Enabling VPC Flow Logs allows you to gain visibility into the traffic patterns within your VPC, allowing you to monitor, troubleshoot, and analyze network activity.

VPC Logs & Cloud Monitoring

Google Cloud offers a variety of powerful tools for analyzing VPC Flow Logs and extracting meaningful insights. One such tool is Cloud Logging, which allows you to view and search flow logs in real-time, set up alerts and notifications, and create custom dashboards for visualization. Additionally, you can leverage BigQuery, Google Cloud’s data warehouse solution, to store and analyze large volumes of flow log data using SQL queries and advanced analytics techniques.

Related: For pre-information, you will find the following posts helpful:

  1. Observability vs Monitoring
  2. Chaos Engineering Kubernetes
  3. Distributed System Observability
  4. ICMPv6

Monitoring Microservices

Microservices Monitoring and Observability

– Containers, cloud platforms, scalable microservices, and the complexity of monitoring distributed systems have highlighted significant gaps in the microservices monitoring space that have been static for some time. As a result, you must fully understand performance across the entire distributed and complex stack, including distributed traces across all microservices.

– So, to do this, you need a solution that can collect, process, and store data used for monitoring. And the data needs to cover several domains and then be combined and centralized for analysts.

– This can be an all-in-one solution that represents or bundles different components for application observability. The bundled solutions would be, for example, an Application Performance Monitoring (APM) that consists of application performance monitoring tools or a single platform, such as Prometheus, which lives in a world of metrics only.  

Application Performance Monitoring:

Application performance monitoring typically involves tracking an application’s response time, the number of requests it can handle, and the amount of memory or other system resources it uses. This data can be used to identify any issues with application performance or scalability. Organizations can take corrective action by monitoring application performance to improve the user experience and ensure their applications run as efficiently as possible.

Identify Trends & Patterns:

Application performance monitoring also helps organizations better understand their users by providing insight into how applications are used and how well they are performing. In addition, this data can be used to identify trends and patterns in user behavior, helping organizations decide how to optimize their applications for better user engagement and experience.

Monitoring observability
Diagram: Monitoring Observability. Source is Bravengeek

**Microservices Monitoring Categories**

We have several different categories to consider. For microservices monitoring and Observability, you must first address your infrastructures, such as your network devices, hypervisors, servers, and storage. Then, you should manage your application performance and health.

Then, you need to monitor how to manage network quality and optimize when possible. For each category, you must consider white box and black box monitoring and potentially introduce new tools such as Artificial Intelligence (AI) for IT operations (AIOps).

Prevented approach to Microservice monitoring: AI and ML.

When choosing microservices observability software, consider a more preventive approach than a reactive one that is better suited for traditional environments. Prevented approaches to monitoring can use historical health and performance telemetry as an early warning with the use of Artificial Intelligence (AI) and Machine Learning (ML) techniques.

Whitebox Monitoring

White box monitoring offers more details than a black box, which tells you something is broken without telling you why. White box monitoring details the why, but you must ensure the data is easily consumable. Black box microservices monitoring can help with predictable failures and known failure modes. Still, given the creative ways that applications and systems fail today, we must examine the details of white-box microservices monitoring. Complex applications fail in unpredictable ways, often termed black holes.

New failures & failure modes

Distributing your software presents new types of failure, and these systems can fail in creative ways and become more challenging to pin down. For example, the service you’re responsible for may be receiving malformed or unexpected data from a source you don’t control because a team manages that service halfway across the globe.

White box monitoring takes a different approach from black box monitoring. It uses Instrumentation, which exposes details about the system’s internals to help you explore these black holes and better understand the creative mode in which applications fail today.

Example: Application Latency

Application latency refers to the time it takes for an application to respond to a user’s request. It is influenced by various factors such as network latency, processing time, and database queries. Monitoring and analyzing application latency can help identify bottlenecks and optimize performance.

Google Cloud Service Mesh

**What is a Cloud Service Mesh?**

A cloud service mesh is a configurable infrastructure layer for microservices applications that makes communication between service instances flexible, reliable, and fast. It typically includes a set of network proxies deployed alongside application code, which handle tasks such as load balancing, service discovery, and authentication. The service mesh enables developers to focus on the business logic while the mesh handles communication concerns.

**Key Features and Benefits**

1. **Improved Security**: One of the main advantages of a service mesh is its ability to enhance security. By managing service-to-service authentication, authorization, and encryption, it ensures that data is protected during transit.

2. **Observability**: A service mesh provides comprehensive observability through metrics, logs, and traces. This enables better monitoring and troubleshooting, helping teams identify and resolve issues quickly.

3. **Traffic Management**: Service meshes allow for sophisticated traffic management capabilities, such as load balancing, traffic splitting, and fault injection. This ensures high availability and resilience of applications.

**Google’s Approach to Service Mesh**

Google has been a pioneer in developing service mesh technology, with its flagship product, Istio. Istio is an open-source service mesh that provides a uniform way to secure, connect, and monitor microservices. Google Cloud Platform (GCP) integrates Istio to offer these capabilities as part of its suite of managed services. This integration allows developers to leverage the power of service mesh without the operational overhead of managing it themselves.

**Case Studies and Real-World Applications**

Several organizations have successfully implemented Google’s service mesh solutions to optimize their operations. For instance, e-commerce giants and financial institutions have seen significant improvements in their system reliability and security by using Istio on GCP. These real-world applications highlight the practical benefits and transformative potential of adopting a service mesh.

Introducing Cloud Trace

Cloud Trace is a comprehensive performance analysis tool provided by Google Cloud. It allows developers to trace and visualize the latency of requests across their applications. By collecting detailed information about each request, including timing data and associated events, Cloud Trace offers valuable insights into application performance.

Microservices Observability: Techniques

Collection, storage, and analytics: Regardless of what you are monitoring, the infrastructure, or the application service, monitoring requires 3 three inputs, more than likely across three domains. We require:

    1. Data collection, 
    2. Storage, and 
    3. Analysis.

We need to look at metrics, traces, and logs for these three domains or, let’s say, components. Out of these three domains, trace data is the most beneficial and excellent way to isolate performance anomalies for distributed applications. Trace data falls into distributed tracing brackets, enabling flexible consumption of capture traces. 

First, you must establish a baseline comprising the four golden signals – latency, traffic, errors, and saturation. The golden signals are good indicators of health and performance and apply to most components of your environment, such as the infrastructure, applications, microservices, and orchestration systems.

I recommend automating this baseline and the automation alerts for deviations from baselines. However, if you collect too much data, you may be alerted to too much. Service Level Indicators (SLI) can help you determine what to alert about and what matters to the user experience. 

The Effect on Microservices: Microservices Monitoring

When considering a microservice application, many believe this independent microservice is independent, but this is nothing more than an illusion. These microservices are highly interdependent, and a failure or slowdown in one service propagates across the stack of microservices.

A typical architecture may include a backend service, a front-end service, or maybe even a docker-compose file. So, several containers must communicate to carry out operations. 

For a simple microservice architecture, we would have a simple front end minimizing a distributed application setup, where microservices serving static contents are at the front end. At the same time, the heavy lifting is done with the other service.   

**Monolith and microservices monitoring**

We have more components to monitor than we had in the monolithic world. With their traditional monolithic, there are only two components to monitor. Then, we had the applications and the hosts.

Compared to the cloud-native world, we have containerized applications orchestrated by Kubernetes with multiple components requiring monitoring. These components include the hosts, Kubernetes platform, Docker containers, and containerized microservices.

**Distributed systems have different demands**

Today, distributed systems are the norm, placing different demands on your infrastructure than the classic, three-tier application. Pinpointing issues in a microservices environment is more challenging than with a monolithic one, as requests traverse both between different layers of the stack and across multiple services. 

**The Challenges: Microservices**

The things we love about microservices are independence and idempotence, which make them difficult to understand, especially when things go wrong. As a result, these systems are often referred to as deep systems, not due to their width but their complexity.

We can no longer monitor their application by using a script to access the application over the network every few seconds, report any failures, or use a custom script to check the operating system to understand when a disk is running out of space.

Understanding saturation is an implemented signal, but it’s just one of them. It quickly becomes unrealistic for a single human, or even a group, to understand enough of the services in the critical path of even a single request and continue maintaining it. 

**Node Affinity or Taints**

Microservices-based applications are typically deployed on dynamic and transient containers. This leaves an unpredictable environment where the pods get deployed and run unless specific intent is expressed using affinity or taints. However, pod placement can still be unpredictable. The unpredictable nature of pod deployment and depth of configuration can lead to complex troubleshooting.

Understanding GKE-Native Monitoring

Prometheus Integration

GKE-Native Monitoring provides a comprehensive and real-time view of the health and performance of your Kubernetes workloads. Leveraging built-in Prometheus integration enables automatic metrics collection and aggregation, offering deep insights into resource utilization, latency, errors, and more. With GKE-Native Monitoring, developers can quickly identify bottlenecks, optimize resource allocation, and proactively detect and troubleshoot issues before they impact users.

Stackdriver Logging

GKE-Native Monitoring integrates with Stackdriver Logging, Google Cloud’s powerful log management and analysis tool. By combining metrics and logs in a unified platform, developers and operators gain complete application observability. Stackdriver Logging provides advanced filtering and querying capabilities, allowing users to search and analyze logs across multiple Kubernetes clusters quickly. With log-based metrics and alerts, teams can set up proactive monitoring to detect anomalies or specific events, ensuring the reliability and performance of their applications.

The Beginnings of Distributed Tracing

Introducing Distributed Tracing

Distributed tracing is used in microservices and other distributed applications because a single operation touches many services. It is a type of correlated logging that helps you gain visibility into the process of a distributed software system. Distributed tracing consists of collecting request data from the application and then analyzing and visualizing this data as traces.

Tracing data, in the form of spans, must be collected from the application, transmitted, and stored to reconstruct complete requests. This can be useful for performance profiling, debugging in production, and root causes analysis of failures or other incidents. 

A key point: The value of distributed tracing

Distributed tracing allows you to understand what a particular service is doing as part of the whole. Thus providing visibility into the operation of your microservice architecture. The trace data you generate can display the overall shape of your distributed system and view individual service performance inside a single request.

**Distributed Tracing Components** 

  1. What is a trace?

Consider your software in terms of requests. Each component of your software stack works in response to a request or a remote procedure call from another service. So, we have a trace encapsulating a single operation within the application, end to end, and represented as a series of spans. 

Each traceable unit of work within the operations generates a span. You can get trace data in two ways: through the Instrumentation of your service processes or by transforming existing telemetry data into trace data. 

  1. Introducing a SPAN

We call each service’s work a span, as in the period it takes for the work to occur. These spans can be annotated with additional information, such as attributes, tags, or logs. So, we can have a combination of metadata and events that can be added to spans—creating effective spans that unlock insights into the behavior of your service. The span data produced by each service is then forwarded to some external process, where it can be aggregated into a trace, analyzed, and stored for further insights.

**Example: Open Tracing**

When you are ready to get started with distributed tracing, you will come across OpenTracing. OpenTracing is a set of standards exposed as frameworks. It’s a vendor-neutral API and Instrumentation for distributed tracing. 

Open tracing does not give you the library but rather a set of rules and extensions that another library can adopt. Thus, you can use and swap around different libraries and expect the same things. 

Diagram: Distributed Tracing Example. Source is Simform

Microservices Architecture Example

Let’s examine an example of the request library for Python. So we have Requests, an elegant and simple HTTP library for Python. The request library talks to HTTP and will rely on specific standards; the standard here will be HTTP. So in Python, when making a “requests.get”.

The underlying library implementation will make a formal HTTP request using the GET method. Thus, the HTTP standards and specs lay the ground rules for what is expected from the client and the server.

The OpenTracing projects do the same thing. They set out the ground rules for distributed tracing, regardless of the implementation and the language used. They have several liabilities available in nine languages: Go, JavaScript, Java, Python, Ruby, PHP, Objective-C, and C++.

For example, the OpenTracing API for Python implements open tracing. This set of standards for tracing with Python provides examples of what Instrumentation should look like and common ways to start a trace. 

Connect the dots with distributed tracing.

And this is a big difference in why you would use tracing and logging. Tracing allows you to connect the dots from one end of the application to the other end of the application. So, if you are starting a request on the front end and want to see how that works on the backend, that works. A trace and child traces connected will have a representation. 

Visual Representation with Jaeger: You may need to use Jaeger for the visual representation. Jaeger is an open-source end-to-end visual representation of tracing that allows you to monitor and troubleshoot transactions in complex distributed systems.

So, we have a dashboard where we can interact and search for traces. Jaeger addresses problems such as monitoring distributed tracing, performance and latency optimizations, root cause analysis, service dependency analysis, and distributed content propagation. It has clients in different languages.

So, for example, if you are using Python, there will be client library features for Python. 

The Role of OpenTelementry

OpenTelementry: We also have OpenTelementry, which is similar. It is described as an observability framework for cloud-native software and is in beta across several languages. It is geared towards traces, metrics, and logs, so it does more than OpenTracing. 

Observability means a system’s internal states can be inferred from its external outputs. Therefore, the tools used to complete an Observability system help understand the relationships between causes and effects in distributed systems.

The term Observability is borrowed from the control theory. It suggests a holistic, data-centric view of microservices monitoring that enables exploration capabilities and identifying unknown failures with the more traditional anomaly detection and notification mechanisms.

Goal: The ultimate goal of Observability is to :

  • Improving baseline performance
  • Restoring baseline performance (after a regression)

By improving the baseline, you improve the user experience. This could be because performance often means request latency for user-facing applications. Then, we have performance regressions, including application outages, which can result in a loss of revenue and negatively impact the brand. The regressions’ time accepted comes down to user expectations. What is accessible, and what is in the SLA?

With chaos engineering tests, you understand your limits and the new places where your system and applications can be made. Chaos Engineering helps you know your system by introducing controlled experiments when debugging microservices. 

A key point: Massive amount of data

Remember that instrumenting potentially generates massive amounts of data, which can cause challenges in storing and analyzing. You must collect, store, and analyze data across the metrics, traces, and logs domains. Then, you need to alert me to these domains and what matters most, not just when an arbitrary threshold is met.

The role of metrics: Most people know a metric comprising a value, timestamp, and metadata. Metrics are collections of statistics that need to be analyzed over time. A single instance of a metric is of limited value. Examples include request rate, average duration, and queue size. These values are usually captured as time series so that operators can see and understand changes to metrics over time. 

Add labels to metric: We can add labels as key-value pairs to better understand metrics. The labels add additional context to this data point. So, the label is a key-value pair indexed with the metrics as part of the injection process. In addition, metrics can now be broken down into sub-metrics.

As we enter the world of labels and tags for metrics, we need to understand the effects this may have on Cardinality. While each indexed label value adds time series, this will come at storage and processing costs. Therefore, we use Cardinality to understand the impact of labels on a metric store.

Aggregated metrics: I continue to see the issue that metrics are typically aggregated every minute or even six to twelve times per minute. However, metrics must be aggregated and visualized within at most one minute but ideally even more quickly. Key questions are: What is the window across which values are aggregated? How are the windows from different sources aligned?

A key point: The issues of Cardinality

Aggregated Metrics allow you to get an aggregate understanding of what’s happening to all instances of a given service and even narrow your query to specific groups of services but fail to account for infinite Cardinality. Due to issues with “high-cardinality” within a time series storage engine, it is recommended to use labels rather than hierarchical naming for metrics.

Prometheus Monitoring

Examples: Push and Pull

So, to get metric, you need to have a push or pull approach. A push agent transmits data upstream and, more than likely, on a scheduled basis. A pull agent expects to be polled. Then, we have Prometheus and several Prometheus metric types. We have a Prometheus server with a pull approach that fits better into larger environments.

Prometheus does not use the term agent and has what is known as exporters. They allow the Prometheus server to pull metrics back from software that cannot be instrumented using the Prometheus client libraries.

a) Prometheus Kuberentes

Prometheus Kubernetes is an open-source monitoring platform that originated at SoundCloud and was released in 2012. Its capabilities include metric collection, storage, data analyses, and visualizations. For visualizations, we can use Prometheus and Grafana.

b) Storing Metrics

You can sort metrics that are time-series data in a general-purpose relational database. However, they should be stored in an optimized repository for storing and retrieving time-series data. We have several time-series storage options, such as Altas, InfluxDB, and Prometheus. Prometheus stands out, but keep in mind that, as far as I’m aware, there is no commercial support and limited professional services for Prometheus.

c) The Role of Logs

Then, we have highly detailed logs. Logs can be anything, unlike metrics, which have a daily uniform format. However, logs do provide you with why something is broken. Logs capture activity that can be printed to the screen or sent to a backend to be centrally stored and viewed.

There is very little standard structure to logs apart from a timestamp indicating when the event occurred. There is minimal log schema, and log structure will depend on how the application uses it and how developers create logs.

d) Emitting Logs

Logs are emitted by almost every entity, such as the basic infrastructure, network and storage, servers and computer notes, operating system nodes, and application software. So, there are various log sources and several tools involved in transport and interpretation, making log collection a complex task. However, remember that you may assume a large amount of log data must be stored.

Search engines such as Google have developed several techniques for searching extensive datasets using arbitrary queries, which have proved very efficient. All of these techniques can be applied to log data.  

e) Logstash, Beats, and FluentD

Logstash is a cloud-scale ingestion tool and is part of the Elasticsearch suit. However, there have been concerns with the performance and scalability of Logstash, which brings us to the lightweight version of Beats. So, if you don’t need the sophisticated data manipulation and filtering of Logstash, you can use Beasts. FluentD provides a unified logging layer or a way to aggregate logs from many different sources and distribute them to many destinations with the ability to transform data.

f) Storing Logs

Structure data such as logs and events are made of key-value pairs, any of which may be searched. This leads us to repositories called nonrelational or no SQL databases. So, storing logs represents a different storage problem from that of metrics. Examples of KV databases include Memcache and Redis.

However, they are not a good choice for log storage due to the inefficiency of indexing and searching. The ELK stack has an indexing and searching engine, a collector, a Logstash, a visualization tool, and the dominant storage mechanism for soft log and event data.

A key point: Analyze logs with AI

So, once you store the logs, they need to be analyzed and viewed. Here, you could, for example, use Splunk. Its data analysis capabilities range from security to AI for IT operations (AIOps). Kibana, part of the Elastic Stack, can also be used.

Summary: Monitoring Microservices

Monitoring microservices has become a critical aspect of maintaining the performance and reliability of modern applications. With the increasing adoption of microservices architecture, understanding how to monitor and manage these distributed systems effectively has become indispensable. In this blog post, we explored the key considerations and best practices for monitoring microservices.

The Need for Comprehensive Monitoring

Microservices are highly distributed and decentralized, which poses unique challenges regarding monitoring. Traditional monolithic applications are more accessible to monitor, but microservices require a different approach. Understanding the need for comprehensive monitoring is the first step toward ensuring the reliability and performance of your microservices-based applications.

Choosing the Right Monitoring Tools

This section will delve into the various monitoring tools available for monitoring microservices. From open-source solutions to commercial platforms, there is a wide range of options. We will discuss the critical criteria for selecting a monitoring tool: scalability, real-time visibility, alerting capabilities, and integration with existing systems.

Defining Relevant Metrics

To effectively monitor microservices, it is essential to define relevant metrics that provide insights into the health and performance of individual services as well as the overall system. In this section, we will explore the key metrics to monitor, including response time, error rates, throughput, resource utilization, and latency. We will also discuss the importance of setting appropriate thresholds for these metrics to trigger timely alerts.

Implementing Distributed Tracing

Distributed tracing plays a crucial role in understanding the flow of requests across microservices. By instrumenting your services with distributed tracing, you can gain visibility into the entire request journey and identify bottlenecks or performance issues. We will explore the benefits of distributed tracing and discuss popular tracing frameworks like Jaeger and Zipkin.

Automating Monitoring and Alerting

Keeping up with the dynamic nature of microservices requires automation. This section will discuss the importance of automated monitoring and alerting processes. From automatically discovering new services to scaling monitoring infrastructure, automation plays a vital role in ensuring the effectiveness of your monitoring strategy.

Conclusion:

Monitoring microservices is a complex task, but with the right tools, metrics, and automation in place, it becomes manageable. By understanding the unique challenges of monitoring distributed systems, choosing appropriate monitoring tools, defining relevant metrics, implementing distributed tracing, and automating monitoring processes, you can stay ahead of potential issues and ensure optimal performance and reliability for your microservices-based applications.

auto scaling observability

Observability vs Monitoring

Observability vs Monitoring

In today's fast-paced digital landscape, where complex systems and applications drive businesses, it's crucial to have a clear understanding of observability and monitoring. These two terms are often used interchangeably, but they represent distinct concepts in the realm of system management and troubleshooting. In this blog post, we will delve into the differences between observability and monitoring, shedding light on their unique features and benefits.

What is Observability? Observability refers to the ability to gain insight into the internal state of a system through its external outputs. It focuses on understanding the behavior and performance of a system from an external perspective, without requiring deep knowledge of its internal workings. Observability provides a holistic view of the system, enabling comprehensive analysis and troubleshooting.

The Essence of Monitoring: Monitoring, on the other hand, involves the systematic collection and analysis of various metrics and data points within a system. It primarily focuses on tracking predefined performance indicators, such as CPU usage, memory utilization, and network latency. Monitoring provides real-time data and alerts to ensure that system health is maintained and potential issues are promptly identified.

Data Collection and Analysis: Observability emphasizes comprehensive data collection and analysis, aiming to capture the entire system's behavior, including its interactions, dependencies, and emergent properties. Monitoring, however, focuses on specific metrics and predefined thresholds, often using predefined agents, plugins, or monitoring tools.

Contextual Understanding: Observability aims to provide a contextual understanding of the system's behavior, allowing engineers to trace the flow of data and understand the cause and effect of different components. Monitoring, while offering real-time insights, lacks the contextual understanding provided by observability.

Reactive vs Proactive: Monitoring is primarily reactive, alerting engineers when predefined thresholds are exceeded or when specific events occur. Observability, on the other hand, enables a proactive approach, empowering engineers to explore and investigate the system's behavior even before issues arise.

Observability and monitoring are both crucial elements in system management, but they have distinct focuses and approaches. Observability provides a holistic and contextual understanding of the system's behavior, allowing for comprehensive analysis and proactive troubleshooting. Monitoring, on the other hand, offers real-time data and alerts based on predefined metrics, ensuring system health is maintained. Understanding the differences between these two concepts is vital for effectively managing and optimizing complex systems.

Highlights: Observability vs Monitoring

Understanding Monitoring & Observability

A: Understanding Monitoring: Monitoring collects data and metrics from a system to track its health and performance. It involves setting up various tools and agents that continuously observe and report on predefined parameters. These parameters include resource utilization, response times, and error rates. Monitoring provides real-time insights into the system’s behavior and helps identify potential issues or bottlenecks.

B: Unveiling Observability: Observability goes beyond traditional monitoring by understanding the system’s internal state and cause-effect relationships. It aims to provide a holistic view of the system’s behavior, even in unexpected scenarios. Observability encompasses three main pillars: logs, metrics, and traces. Logs capture detailed events and activities, metrics quantify system behavior over time, and traces provide end-to-end transaction monitoring. By combining these pillars, observability enables deep system introspection and efficient troubleshooting.

C: The Power of Contextual Insights: One of the key advantages of observability is its ability to provide contextual insights. Traditional monitoring may alert you when a specific metric exceeds a threshold, but it often lacks the necessary context to debug complex issues. With its comprehensive data collection and correlation capabilities, Observability allows engineers to understand the context surrounding a problem. Contextual insights help in root cause analysis, reducing mean time to resolution and improving overall system reliability.

D: The Role of Automation: Automation plays a crucial role in monitoring and observability. In monitoring, automation can help set up alerts, generate reports, and scale the monitoring infrastructure. On the other hand, observability requires automated instrumentation and data collection to handle the vast amount of information generated by modern systems. Automation enables engineers to focus on analyzing insights rather than spending excessive time on data collection and processing.

**Observability: The First Steps**

The first step towards achieving modern observability is to gather metrics, traces, and logs. From the collected data points, observability aims to generate valuable outcomes for decision-making. The decision-making process goes beyond resolving problems as they arise. Next-generation observability goes beyond application remediation, focusing on creating business value to help companies achieve their operational goals. This decision-making process can be enhanced by incorporating user experience, topology, and security data.

**Observability Platform**

A full-stack observability platform monitors every monitored host in your environment. Depending on the technologies used, an average of 500 metrics are generated per computational node. AWS, Azure, Kubernetes, and VMware Tanzu are some platforms that use observability to collect important key performance metrics for services and real-user monitored applications. 

Within a microservices environment, dozens, if not hundreds, of microservices call one another. Distributed tracing can help you understand how the different services connect and how your requests flow. 

**Pillars of Observability**

The three pillars of observability form a strong foundation for making data-driven decisions, but there are opportunities to extend observability. User experience and security details must be considered to gain a deeper understanding. A holistic, context-driven approach to advanced observability enables proactively addressing potential problems before they arise.

**The Role of Monitoring**

To understand the difference between observability and monitoring, we need first to discuss the role of monitoring. Monitoring is the evaluation that helps identify the most practical and efficient use of resources. So, the big question I put to you is what to monitor. This is the first step to preparing a monitoring strategy.

To fully understand if monitoring is enough or if you need to move to an observability platform, ask yourself a couple of questions. Firstly, consider what you should be monitoring, why you should be monitoring it, and how you should be monitoring it. 

Observability & Service Mesh

What is a Cloud Service Mesh?

A Cloud Service Mesh is a design pattern that helps manage and secure microservices interactions. Essentially, it acts as a dedicated layer for controlling the network traffic between microservices. By introducing a service mesh, developers can offload much of the responsibility for service communication from the application code itself, making the entire system more resilient and easier to manage.

### Key Benefits of Implementing a Cloud Service Mesh

#### Enhanced Security

One of the primary advantages of a Cloud Service Mesh is the enhanced security it offers. With features like mutual TLS (mTLS) for encrypting communications between services, a service mesh ensures that data is protected as it travels through the network. This is particularly important in a multi-cloud or hybrid cloud environment where services might be spread across different platforms.

#### Improved Observability

Observability is another critical benefit. A Cloud Service Mesh provides granular insights into service performance, helping developers identify and troubleshoot issues quickly. Metrics, logs, and traces are collected systematically, offering a comprehensive view of the entire microservices ecosystem.

#### Traffic Management

Managing traffic between services becomes significantly easier with a Cloud Service Mesh. Features like load balancing, traffic splitting, and failover mechanisms are built-in, ensuring that service-to-service communication remains efficient and reliable. This is particularly beneficial for applications requiring high availability and low latency.

### Popular Cloud Service Mesh Solutions

Several solutions have emerged as leaders in the Cloud Service Mesh space. Istio, Linkerd, and Consul are among the most popular options, each offering unique features and benefits. Istio, for example, is known for its robust policy enforcement and telemetry capabilities, while Linkerd is praised for its simplicity and performance. Consul, on the other hand, excels in multi-cloud environments, providing seamless service discovery and configuration.

### Challenges and Considerations

While the benefits are compelling, implementing a Cloud Service Mesh is not without its challenges. Complexity can be a significant hurdle, particularly for organizations new to microservices architecture. The additional layer of infrastructure requires careful planning and management. Moreover, there is a learning curve associated with configuring and maintaining a service mesh, which can impact development timelines.

Example Product: Cisco AppDynamics

### Real-Time Monitoring: Keeping an Eye on Your Applications

One of the standout features of Cisco AppDynamics is its real-time monitoring capabilities. By continuously tracking the performance of your applications, AppDynamics provides instant insights into any issues that may arise. This allows businesses to quickly identify and address performance bottlenecks, ensuring that their applications remain responsive and reliable. Whether it’s tracking transaction times, monitoring server health, or keeping an eye on user interactions, Cisco AppDynamics provides a comprehensive view of your application’s performance.

### Advanced Analytics: Turning Data into Actionable Insights

Data is the lifeblood of modern businesses, and Cisco AppDynamics excels at turning raw data into actionable insights. With its advanced analytics engine, AppDynamics can identify patterns, trends, and anomalies in your application’s performance data. This empowers businesses to make informed decisions, optimize their applications, and proactively address potential issues before they impact users. From root cause analysis to predictive analytics, Cisco AppDynamics provides the tools you need to stay ahead of the curve.

### Comprehensive Diagnostics: Troubleshooting Made Easy

When performance issues do arise, Cisco AppDynamics makes troubleshooting a breeze. Its comprehensive diagnostics capabilities allow you to drill down into every aspect of your application’s performance. Whether it’s identifying slow database queries, pinpointing code-level issues, or tracking down problematic user interactions, AppDynamics provides the detailed information you need to resolve issues quickly and efficiently. This not only minimizes downtime but also ensures a seamless user experience.

### Enhancing User Experiences: The Ultimate Goal

At the end of the day, the ultimate goal of any application is to provide a positive user experience. Cisco AppDynamics helps businesses achieve this by ensuring that their applications are always performing at their best. By providing real-time monitoring, advanced analytics, and comprehensive diagnostics, AppDynamics enables businesses to deliver fast, reliable, and engaging applications that keep users coming back for more. In a competitive digital landscape, this can be the difference between success and failure.

Google Cloud Monitoring

Example: What is Ops Agent?

Ops Agent is a lightweight, flexible monitoring agent explicitly designed for Compute Engine instances. It allows you to collect and analyze essential metrics and logs from your virtual machines, providing valuable insights into your infrastructure’s health, performance, and security.

To start monitoring your Compute Engine instance with Ops Agent, you must install and configure it properly. The installation process is straightforward and can be done through the Google Cloud Console or the command line. Once installed, you can configure Ops Agent to collect specific metrics and logs based on your requirements.

Ops Agent offers a wide range of metrics and logs that can be collected and monitored. These include system-level metrics like CPU and memory usage, network traffic, disk I/O, and more. Additionally, Ops Agent allows you to gather application-specific metrics and logs, providing deep insights into the performance and behavior of your applications running on the Compute Engine instance.

Options: Open source or commercial

Knowing this lets you move into the different tools and platforms available. Some of these tools will be open source, and others commercial. When evaluating these tools, one word of caution: does each tool work in a silo, or can it be used across technical domains? Silos are breaking agility in every form of technology.

Related: For pre-information, you may find the following posts helpful:

  1. Microservices Observability
  2. Auto Scaling Observability
  3. Network Visibility
  4. WAN Monitoring
  5. Distributed Systems Observability
  6. Prometheus Monitoring
  7. Correlate Disparate Data Points
  8. Segment Routing

Observability vs Monitoring

Monitoring and Distributed Systems

By utilizing distributed architectures, the cloud native ecosystem allows organizations to build scalable, resilient, and novel software architectures. However, the ever-changing nature of distributed systems means that previous approaches to monitoring can no longer keep up. The introduction of containers made the cloud flexible and empowered distributed systems.

Nevertheless, the ever-changing nature of these systems can cause them to fail in many ways. Distributed systems are inherently complex, and, as systems theorist Richard Cook notes, “Complex systems are intrinsically hazardous systems.”

Cloud-native systems require a new approach to monitoring, one that is open-source compatible, scalable, reliable, and able to control massive data growth. However, cloud-native monitoring can’t exist in a vacuum; it must be part of a broader observability strategy.

**Gaining Observability**

Key Features of Observability:

1. High-dimensional data collection: Observability involves collecting a wide variety of data from different system layers, including metrics, logs, traces, and events. This comprehensive data collection provides a holistic view of the system’s behavior.

2. Distributed tracing: Observability allows tracing requests as they flow through a distributed system, enabling engineers to understand the path and identify performance bottlenecks or errors.

3. Contextual understanding: Observability emphasizes capturing contextual information alongside the data, enabling teams to correlate events and understand the impact of changes or incidents.

Benefits of Observability:

1. Faster troubleshooting: By providing detailed insights into system behavior, observability helps teams quickly identify and resolve issues, minimizing downtime and improving system reliability.

2. Proactive monitoring: Observability allows teams to detect potential problems before they become critical, enabling proactive measures to prevent service disruptions.

3. Improved collaboration: With observability, different teams, such as developers, operations, and support, can have a shared understanding of the system’s behavior, leading to improved collaboration and faster incident response.

**Gaining Monitoring**

On the other hand, monitoring focuses on collecting and analyzing metrics to assess a system’s health and performance. It involves setting up predefined thresholds or rules and generating alerts based on specific conditions.

Key Features of Monitoring:

1. Metric-driven analysis: Monitoring relies on predefined metrics collected and analyzed to measure system performance, such as CPU usage, memory consumption, response time, or error rates.

2. Alerting and notifications: Monitoring systems generate alerts and notifications when predefined thresholds or rules are violated, enabling teams to take immediate action.

3. Historical analysis: Monitoring systems provide historical data, allowing teams to analyze trends, identify patterns, and make informed decisions based on past performance.

Benefits of Monitoring:

1. Performance optimization: Monitoring helps identify performance bottlenecks and inefficiencies within a system, enabling teams to optimize resources and improve overall system performance.

2. Capacity planning: By monitoring resource utilization and workload patterns, teams can accurately plan for future growth and ensure sufficient resources are available to meet demand.

3. Compliance and SLA enforcement: Monitoring systems help organizations meet compliance requirements and enforce service level agreements (SLAs) by tracking and reporting on key metrics.

Observability & Monitoring: A Unified Approach

While observability and monitoring differ in their approaches and focus, they are not mutually exclusive. When used together, they complement each other and provide a more comprehensive understanding of system behavior.

Observability enables teams to gain deep insights into system behavior, understand complex interactions, and troubleshoot issues effectively. Conversely, monitoring provides a systematic approach to tracking predefined metrics, generating alerts, and ensuring the system meets performance requirements.

Combining observability and monitoring can help organizations create a robust system monitoring and management strategy. This integrated approach empowers teams to quickly detect, diagnose, and resolve issues, improving system reliability, performance, and customer satisfaction.

Application Latency & Cloud Trace

A: – Latency, in simple terms, refers to the delay between sending a request and receiving a response. It can be caused by various factors, such as network congestion, server processing time, or inefficient code execution. Understanding the different components contributing to latency is essential for optimizing application performance.

B: – Google Cloud Trace is a powerful diagnostic tool provided by Google Cloud Platform. It allows developers to visualize and analyze latency data for their applications. By instrumenting code and capturing trace data, developers gain valuable insights into the performance bottlenecks and can take proactive measures to improve latency.

C: – To start capturing traces in your application, you need to integrate the Cloud Trace API into your codebase. Once integrated, Cloud Trace collects detailed latency data, including information about the various services and resources used to process a request. This data can then be visualized and analyzed through the user-friendly Cloud Trace interface.

The Starting Point: Observability vs Monitoring

You need to measure and gather the correct event information in your environment, which will be done with several tools. This will let you know what is affecting your application performance and infrastructure. As a good starting point, there are four golden signals for Latency, saturation, traffic, and errors. These are Google’s Four Golden Signals. The four most important metrics to keep track of are: 

      1. Latency: How long it takes to serve a request
      2. Traffic: The number of requests being made.
      3. Errors: The rate of failing requests. 
      4. Saturation: How utilized the service is.

So now we have some guidance on what to monitor and let us apply this to Kubernetes to, for example, let’s say, a frontend web service that is part of a tiered application, we would be looking at the following:

      1. How many requests is the front end processing at a particular point in time,
      2. How many 500 errors are users of the service received, and 
      3. Does the request overutilize the service?

We already know that monitoring is a form of evaluation that helps identify the most practical and efficient use of resources. With monitoring, we observe and check the progress or quality of something over time. Within this, we have metrics, logs, and alerts. Each has a different role and purpose.

**Monitoring: The role of metrics**

Metrics are related to some entity and allow you to view how many resources you consume. Metric data consists of numeric values instead of unstructured text, such as documents and web pages. Metric data is typically also a time series, where values or measures are recorded over some time. 

Available bandwidth and latency are examples of such metrics. Understanding baseline values is essential. Without a baseline, you will not know if something is happening outside the norm.

Note: Average Baselines

What are the average baseline values for bandwidth and latency metrics? Are there any fluctuations in these metrics? How do these values rise and fall during normal operations and peak usage? This may change over different days, weeks, and months.

If you notice a rise in these values during normal operations, this would be deemed abnormal and should act as a trigger that something could be wrong and needs to be investigated. Remember that these values should not be gathered as a once-off but can be gathered over time to understand your application and its underlying infrastructure better.

**Monitoring: The role of logs**

Logging is an essential part of troubleshooting application and infrastructure performance. Logs give you additional information about events, which is important for troubleshooting or discovering the root cause of the events. Logs will have much more detail than metrics, so you will need some way to parse the logs or use a log shipper.

A typical log shipper will take these logs from the standard out in a Docker container and ship them to a backend for processing.

Note: Example Log Shipper

FluentD or Logstash has pros and cons. The group can use it here and send it to a backend database, which could be the ELK stack ( Elastic Search). Using this approach, you can add different things to logs before sending them to the backend. For example, you can add GEO IP information. This will add richer information to the logs that can help you troubleshoot.

Understanding VPC Flow Logs

VPC Flow Logs is a feature provided by Google Cloud that captures network traffic metadata within a Virtual Private Cloud (VPC) network. This metadata includes source and destination IP addresses, protocol, port, and more. By enabling VPC Flow Logs, administrators can gain visibility into the network traffic patterns and better understand the communication flow within their infrastructure.

We can leverage data visualization tools to make the analysis more visually appealing and easier to comprehend. Google Cloud provides various options for creating interactive and informative dashboards, such as Data Studio and Cloud Datalab. These dashboards can display network traffic trends, highlight critical metrics, and aid in identifying patterns or anomalies that might require further investigation.

**Monitoring: The role of alerting**

Then we have the alerting, and it would be best to balance how you monitor and what you alert on. So, we know that alerting is not always perfect, and getting the right alerting strategy in place will take time. It’s not a simple day-one installation and requires much effort and cross-team collaboration.

You know that alerting on too much can cause alert fatigue. We are all too familiar with the problems alert fatigue can bring and the tensions it can create in departments.

To minimize this, consider Service Level Objectives (SLOs) for alerts. SLOs are measurable characteristics such as availability, throughput, frequency, and response times. They are the foundation for a reliability stack. Also, it would be best if you considered alert thresholds. If these are too short, you will get a lot of false positives on your alerts. 

Monitoring is not enough.

Even with all of these in place, monitoring is not enough. Due to the sheer complexity of today’s landscape, you need to consider and think differently about the tools you use and how you use the intelligence and data you receive from them to resolve issues before they become incidents.  That monitoring by itself is not enough.

The tool used to monitor is just a tool that probably does not cross technical domains, and different groups of users will administer each tool without a holistic view. The tools alone can take you only half the way through the journey.  Also, what needs to be addressed is the culture and the traditional way of working in silos. A siloed environment can affect the monitoring strategy you want to implement. Here, you can look at an observability platform.

The Foundation of GKE-Native Monitoring

GKE-Native Monitoring builds upon the robust foundation of Prometheus and Stackdriver, providing a seamless integration that simplifies observability within GKE clusters. By harnessing the strengths of these industry-leading monitoring solutions, GKE-Native Monitoring offers a robust and comprehensive monitoring experience.

Under the umbrella of GKE-Native Monitoring, users gain access to a rich set of features designed to enable fine-grained visibility and control. These include customizable dashboards, real-time metrics, alerts, and horizontal pod autoscaling. With these tools, developers and operators can easily monitor the health, performance, and resource utilization of their GKE clusters.

Observability vs Monitoring

When it comes to observability vs. monitoring, we know that monitoring can detect problems and tell you if a system is down, and when your system is UP, Monitoring doesn’t care. Monitoring only cares when there is a problem. The problem has to happen before monitoring takes action. It’s very reactive. So, if everything is working, monitoring doesn’t care.

On the other hand, we have an observability platform, which is a more proactive practice. It’s about what and how your system and services are doing. Observability lets you improve your insight into how complex systems work and quickly get to the root cause of any problem, known or unknown.

Observability is best suited for interrogating systems to explicitly discover the source of any problem, along any dimension or combination of dimensions, without first predicting. This is a proactive approach.

## Pillars of Observability

This is achieved by combining logs, metrics, and traces. So, we need data collection, storage, and analysis across these domains while also being able to perform alerting on what matters most. Let’s say you want to draw correlations between units like TCP/IP packets and HTTP errors experienced by your app.

The Observability platform pulls context from different sources of information, such as logs, metrics, events, and traces, into one central context. Distributed tracing adds a lot of value here.

Also, when everything is placed into one context, you can quickly switch between the necessary views to troubleshoot the root cause. Viewing these telemetry sources with one single pane of glass is an excellent key component of any observability system. 

## Known and Unknown vs Unknown and Unknown 

Monitoring automatically reports whether known failure conditions are occurring or are about to occur. In other words, it is optimized for reporting on unknown conditions about known failure modes, which are referred to as known unknowns. In contrast, Observability is centered around discovering if and why previously unknown failure modes may be occurring, in other words, to find unknown unknowns.

The monitoring-based approach of metrics and dashboards is an investigative practice that relies on humans’ experience and intuition to detect and understand system issues. This is okay for a simple legacy system that fails in predictable ways, but the instinctual technique falls short for modern systems that fail in unpredictable ways.

With modern applications, the complexity and scale of their underlying systems quickly make that approach unattainable, and we can’t rely on hunches. Observability tools differ from traditional monitoring tools because they enable engineers to investigate any system, no matter how complex. You don’t need to react to a hunch or have intimate system knowledge to generate a hunch.

Monitoring vs Observability: Working together?

Monitoring helps engineers understand infrastructure concerns, while observability helps engineers understand software concerns. So, Observability and Monitoring can work together. First, the infrastructure does not change too often, and when it fails, it will fail more predictably. So, we can use monitoring here.

This is compared to software system states that change daily and are unpredictable. Observability fits this purpose. The conditions that affect infrastructure health change infrequently and are relatively more straightforward to predict. 

We have several well-established practices to expect, such as capacity planning and the ability to remediate automatically (e.g., auto-scaling in a Kubernetes environment). All of these can be used to tackle these types of known issues. 

Monitoring and infrastructure problems

Due to its relatively predictable and slowly changing nature, the aggregated metrics approach monitors and alerts perfectly for infrastructure problems. So here, a metric-based system works well. Metrics-based systems and their associated alerts help you see when capacity limits or known error conditions of underlying systems are being reached.

Now, we need to look at monitoring the Software and have access to high-cardinality fields. These may include the user ID or a shopping cart ID. Code that is well-instrumented for Observability allows you to answer complex questions that are easy to miss when examining aggregate performance.

Observability and monitoring are essential practices in modern software development and operations. While observability focuses on understanding system behaviour through comprehensive data collection and analysis, monitoring uses predefined metrics to assess performance and generate alerts.

By leveraging both approaches, organizations can gain a holistic view of their systems, enabling proactive measures, faster troubleshooting, and optimal performance. Embracing observability and monitoring as complementary practices can pave the way for more reliable, scalable, and efficient systems in the digital era.

Summary: Observability vs Monitoring

As technology advances rapidly, understanding and managing complex systems becomes increasingly important. Two terms that often arise in this context are observability and monitoring. While they may seem interchangeable, they represent distinct approaches to gaining insights into system performance. In this blog post, we delved into observability and monitoring, exploring their differences, benefits, and how they can work together to provide a comprehensive understanding of system behavior.

Understanding Monitoring

Monitoring is a well-established practice in the world of technology. It involves collecting and analyzing data from various sources to ensure the smooth functioning of a system. Monitoring typically focuses on key performance indicators (KPIs) such as response time, error rates, and resource utilization. Organizations can proactively identify and resolve issues by tracking these metrics, ensuring optimal system performance.

Unveiling Observability

Observability takes a more holistic approach compared to monitoring. It emphasizes understanding the internal state of a system by leveraging real-time data and contextual information. Unlike monitoring, which focuses on predefined metrics, observability aims to provide a clear picture of how a system behaves under different conditions. It achieves this by capturing fine-grained telemetry data, including logs, traces, and metrics, which can be analyzed to uncover patterns, anomalies, and root causes of issues.

The Benefits of Observability

One of the key advantages of observability is its ability to handle unexpected scenarios and unknown unknowns. Capturing detailed data about system behavior enables teams to investigate issues retroactively, even those that were not anticipated during the design phase. Additionally, observability allows for better collaboration between different teams, as the shared visibility into system internals facilitates more effective troubleshooting and faster incident resolution.

Synergy between Observability and Monitoring

While observability and monitoring are distinct concepts, they are not mutually exclusive. They can complement each other to provide a comprehensive understanding of system performance. Monitoring can provide high-level insights into system health and performance trends, while observability can dive deeper into specific issues and offer a more granular view. By combining these approaches, organizations can achieve a proactive and reactive system management approach, ensuring stability and resilience.

Conclusion:

Observability and monitoring are two powerful tools in the arsenal of system management. While monitoring focuses on predefined metrics, observability takes a broader and more dynamic approach, capturing fine-grained data to gain deeper insights into system behavior. By embracing observability and monitoring, organizations can unlock a comprehensive understanding of their systems, enabling them to proactively address issues, optimize performance, and deliver exceptional user experiences.