combination lock and different gadgets on white office table. privacy protection, encrypted connection concept, buying online

VMware NSX – Network and Security Virtualization

VMware NSX Security

In today's rapidly evolving digital landscape, ensuring robust network security has become more critical than ever. One effective solution that organizations are turning to is VMware NSX, a powerful software-defined networking (SDN) and security platform. This blog post explores the various aspects of VMware NSX security and how it can enhance network protection.

VMware NSX provides a comprehensive set of security features designed to tackle the modern cybersecurity challenges. It combines micro-segmentation, network virtualization, and advanced threat prevention to create a dynamic and secure networking environment.

Micro-segmentation for Enhanced Security: Micro-segmentation is a key feature of VMware NSX that allows organizations to divide their networks into smaller segments or zones. By implementing granular access controls, organizations can isolate and secure critical applications and data, limiting the potential damage in case of a security breach.

Network Virtualization and Agility: VMware NSX's network virtualization capabilities enable organizations to create virtual networks that are decoupled from the underlying physical infrastructure. This provides increased agility and flexibility while maintaining security. With network virtualization, organizations can easily spin up new networks, deploy security policies, and scale their infrastructure as needed.

dvanced Threat Prevention and Detection: VMware NSX incorporates advanced threat prevention and detection mechanisms to safeguard the network against evolving cyber threats. It leverages various security technologies such as intrusion detection and prevention systems (IDPS), next-generation firewalls (NGFW), and virtual private networks (VPNs) to proactively identify and mitigate potential security risks.

Integration with Security Ecosystem: Another significant advantage of VMware NSX is its seamless integration with existing security ecosystem components. It can integrate with leading security solutions, such as antivirus software, security information and event management (SIEM) systems, and vulnerability scanners, to provide a holistic security posture.

In conclusion, VMware NSX offers a robust and comprehensive security solution for organizations looking to enhance their network security. Its unique combination of micro-segmentation, network virtualization, advanced threat prevention, and integration capabilities make it a powerful tool in the battle against cyber threats. By leveraging VMware NSX, organizations can achieve better visibility, control, and protection for their networks, ultimately ensuring a safer digital environment.

Highlights: VMware NSX Security

Thank Andreas Gautschi from VMware for giving me a 2-hour demonstration and brain dump about NSX. Initially, even as an immature product, SDN got massive hype in its first year. However, the ratio from slide to production deployments was minimal. It was getting a lot of publicity even though it was mostly an academic and PowerPoint reality.

Control of security from a central location

You need a bird’ s-eye view of your entire IT security landscape to make better decisions, learn, analyze, and respond quickly to live threats. Under the current methodology, it is much more important to isolate and respond to an attack within a short period.

In most scenarios, a hardware-based appliance firewall will be used as the perimeter firewall. Most implementations will be Palo Alto/Checkpoint or Cisco-based firewalls with firewall policies deployed on x86 commodity servers. Most of these appliances are controlled through a proprietary CLI command, and some newer models integrate IDS/IPS into the firewall, allowing for unified threat management.

Blocking a vulnerable port for an entire infrastructure is as easy as blocking a bridge. As an analogy, it would be similar to raising the drawbridge so that direct access to the castle is impossible.

zero trust

ZT and Microsegmentation

By implementing Zero Trust microsegmentation, all ingress/egress traffic hitting your virtual NIC cards will be compared against the firewall policies you configure. The packet will be dropped without a rule matching the specific traffic flow. All unrecognized traffic will be denied by default at the vNIC itself by a default deny rule. A positive security model uses whitelisting, where only things that are specifically allowed are accepted, and everything else is rejected.

The Role of SDN

Recently, the ratio has changed, and the concepts of SDN apply to different types of network security components meeting various requirements. SDN enables network virtualization with many companies, such as VMware NSX, Midokura, Juniper Contrail, and Nuage, offering network virtualization solutions. The following post generally discusses network virtualization but focuses more on the NSX functionality.  

micro segmentation technology

For additional pre-information, you may find the following helpful:

  1. WAN Virtualization
  2. Nexus 1000v
  3. Docker Security Options



Network Security Virtualization

Key VMware NSX Security Discussion points:


  • Introduction to VMware NSX Security, and where it can be used.

  • Discussion on Network Security Virtualization.

  • The role of containers and the changing workloads.

  • Distributed Firewalling and attack surface.

  •  Policy classification.

Back to basics with the Virtualization

Resource virtualization is crucial in fulfilling the required degree of adaptability. Therefore, we can perform Virtualization in many areas, including the Virtualization of servers, applications, storage devices, security appliances, and, not surprisingly, the network infrastructure. Server virtualization was the starting point for most of them.

Remember that security is a key driver and a building block behind the virtualized network. An essential component of a security policy is the definition of a network perimeter. Communications between the inside and the outside of the perimeter must occur through a checkpoint. With virtualization, this checkpoint can now be located in multiple network parts. Not just the traditional edge.

Key VMware NSX Points

1. Network Segmentation:

One of the fundamental aspects of VMware NSX Security is its ability to provide network segmentation. Organizations can create isolated environments for different applications and workloads by dividing the network into multiple virtual segments. This isolation helps prevent lateral movement of threats and limits the impact of a potential security breach.

2. Micro-segmentation:

With VMware NSX Security, organizations can implement micro-segmentation, which allows them to apply granular security policies to individual workloads within a virtualized environment. This level of control enables organizations to establish a zero-trust security model, where each workload is protected independently, reducing the attack surface and minimizing the risk of unauthorized access.

3. Distributed Firewall:

VMware NSX Security incorporates a distributed firewall that operates at the hypervisor level. Unlike traditional perimeter firewalls, which are typically centralized, the distributed firewall provides virtual machine-level security. This approach ensures that security policies are enforced regardless of the virtual machine’s location, providing consistent protection across the entire virtualized infrastructure.

4. Advanced Threat Prevention:

VMware NSX Security leverages advanced threat prevention techniques to detect and mitigate potential security threats. It incorporates intrusion detection and prevention systems (IDPS), malware detection, and network traffic analysis. These capabilities enable organizations to proactively identify and respond to potential security incidents, reducing the risk of data breaches and system compromises.

5. Automation and Orchestration:

Automation and orchestration are integral components of VMware NSX Security. With automation, organizations can streamline security operations, reducing the probability of human errors and speeding up the response to security incidents. Orchestration allows for integrating security policies with other IT processes, enabling consistent and efficient security management.

6. Integration with Existing Security Solutions:

VMware NSX Security can seamlessly integrate with existing security solutions, such as threat intelligence platforms, security information and event management (SIEM) systems, and endpoint protection tools. This integration enhances an organization’s overall security posture by aggregating security data from various sources and providing a holistic view of the network’s security landscape.

Network Security Virtualization

The Role of Network Virtualization

Virtualization provides network services independent of the physical infrastructure in its simplest form. Traditional network services were tied to physical boxes, lacking elasticity and flexibility. This results in many technical challenges, including central chokepoints, hair pinning, traffic trombones, and the underutilization of network devices.

Network virtualization combats this and abstracts network services ( different firewalling such as context firewall, routing, etc.) into software, making it easier to treat the data center fabric as a pool of network services. When a service is put into the software, it gains elasticity and fluidity qualities that are not present with physical nodes. The physical underlay provides a connectivity model only concerned with endpoint connectivity.

The software layer on top of the physical world provides the abstraction for the workloads, offering excellent application continuity. Now, we can take two data centers and make them feel like one. You can help facilitate this connection by incorporating kubernetes software to help delegate when a service needs to be done correctly, keeping on top of workload traffic.

The Different Traffic Flows

All east and west traffic flows via the tunnels. VMware’s NSX optimizes local egress traffic so that traffic exits the right data center and does not need to flow via the data center interconnect to egress. We used hacks with HSRP localization or complicated protocols such as LISP to overcome outbound TE with traditional designs. 

The application has changed from the traditional client-server model, where you know how many hosts you run on top of. To an application that moves and scales on numerous physical nodes that may change. With network virtualization, we don’t need to know what physical Host the application is on, as all the computing, storage, and networking move with the application.

If application X moves to location X, all its related services move to location X, too. The network becomes a software abstract. Apps can have multiple tiers – front end, database, and storage with scale capabilities, automatically reacting to traffic volumes. It’s far more efficient to scale up docker containers with container schedules to meet traffic volumes than to deploy 100 physical servers, leaving them idle for half the year. If performance is not a vital issue, it makes sense to move everything to software.

VMware NSX Security: Changing Endpoints

The endpoints the network must support have changed. We now have container based virtualization, VMs, and mobile and physical devices. Networking is evolving, and it’s all about connecting all these heterogeneous endpoints that are becoming very disconnected from the physical infrastructure. Traditionally, a server is connected to the network with an Ethernet port.

Then, virtualization came along, offering the ability to architect new applications. Instead of single servers hosting single applications, multiple VMs host different applications on a single physical server. More recently, we saw the introduction of docker containers, spawning in as little as 350ms.

The Challenge with Traditional VM

Traditional VLANs cannot meet this type of fluidity as each endpoint type has different network requirements. The network must now support conventional physical servers, VMs, and Docker containers. All these stacks must cross each other and, more importantly, be properly secured in a multitenant environment.

Can traditional networking meet this? VMware NSX is a reasonably mature product offering virtualized network and security services that can secure various endpoints. 

Network endpoints have different trust levels. Administrators trust hypervisors more now, with only two VMware hypervisor attacks in the last few years. Unfortunately, the Linux kernel has numerous ways to attack it. Security depends on the attack surface, and an element with a large surface has more potential for exploitation. The Linux kernel has a large attack surface, while hypervisors have a small one.

The more options an attacker can exploit, the larger the attack surface. Containers run many workloads, so the attack surface is more extensive and varied. The virtual switch inside the container has a different trust level than a vswitch inside a hypervisor. Therefore, you must operate different security paradigms relating to containers than hypervisors. 

A key point: VMware NSX Security and Network Security Virtualization.

NSX provides isolation to all these endpoint types with microsegmentation. Microsegmentation allows you to apply security policy at a VM-NIC level. This offers the ability to protect east-west traffic and move policies with the workload.

This doesn’t mean that each VM NIC requires an individual configuration. NSX uses a distributed firewalls kernel module, and the hosts obtain the policy without individual config. Everything is controlled centrally but installed locally on each vSphere host. It scales horizontally, so you get more firewalls if you add more computing capacity.

All the policies are implemented in a distributed fashion, and the firewall is situated right in front of the VM in the hypervisor. So you can apply policy at a VM NIC level without hairpinning or trombone the traffic. Traffic doesn’t need to go across the data center to a central policy engine: offering optimum any to any traffic.

Even though the distributed firewall is a Kernel loadable module (KLM) of the ESXi Host, policy enforcement is at the VM’s vNIC. 

Network Security Virtualization: Policy Classification

A central selling point with NSX is that you get an NSX-distributed firewall. VMware operates with three styles of security:

  1. We have traditional network-focused 5-tuple matching.
  2. We then move up a layer with infrastructure-focused rules such as port groups, vCenter objects, etc.
  3. We have application-focused rule sets at a very high level, from the Web tier to the App tier permit TCP port 80.

Traditionally, we have used network-based rules, so the shift to application-based, while more efficient, will present the most barriers. People’s mindset needs to change. However, the real benefit of NSX comes from this type of endpoint labeling and security. Sometimes, more than a /8 is required!

What happens when you run out of /8? We start implementing kludges with NAT, etc. Security labeling has been based on IP addresses in the past, and we should start moving with tagging or other types of labeling.

IP addresses are just a way to get something from point A to point B, but if we can focus on different ways to class traffic, the IP address should be irrelevant to security classification. The less tied we are to IP addresses as a security mechanism, the better we will be.

With NSX, endpoints are managed based on high-level policy language that adequately describes the security function. IP is a terrible way to do this as it imposes hard limits on mobile VMs and reduces flexibility. The policy should be independent of IP address assignment.

Organizations must adopt robust and versatile security solutions in an era of constant cybersecurity threats. VMware NSX Security offers comprehensive features and capabilities that can significantly enhance network security. Organizations can build a robust security infrastructure that protects their data and infrastructure from evolving cyber threats by implementing network segmentation, micro-segmentation, a distributed firewall, advanced threat prevention, automation, and integration with existing security solutions. VMware NSX Security empowers organizations to take control of their network security and ensure the confidentiality, integrity, and availability of their critical assets.

 

Summary: VMware NSX Security

In today’s digital landscape, network security plays a crucial role in safeguarding sensitive information and ensuring the smooth functioning of organizations. One powerful solution that has gained significant traction is VMware NSX. This blog post explored the various aspects of VMware NSX security and how it enhances network protection.

Understanding VMware NSX

VMware NSX is a software-defined networking (SDN) and network virtualization platform that brings virtualization principles to the network infrastructure. It enables organizations to create virtual networks and implement security policies decoupled from physical network hardware. This virtualization layer provides agility, scalability, and advanced security capabilities.

Micro-Segmentation for Enhanced Security

One of the key features of VMware NSX is micro-segmentation. Traditional perimeter-based security approaches are no longer sufficient to protect against advanced threats. Micro-segmentation allows organizations to divide their networks into smaller, isolated segments, or “micro-segments,” based on various factors such as application, workload, or user. Each micro-segment can have its security policies, providing granular control and reducing the attack surface.

Distributed Firewall for Real-time Protection

VMware NSX incorporates a distributed firewall that operates at the hypervisor level, providing real-time protection for virtualized workloads and applications. Unlike traditional firewalls that operate at the network perimeter, the distributed firewall is distributed across all virtualized hosts, allowing for east-west traffic inspection. This approach enables organizations to promptly detect and respond to threats within their internal networks.

Integration with the Security Ecosystem

VMware NSX integrates seamlessly with a wide range of security solutions and services, enabling organizations to leverage their existing security investments. Integration with leading security vendors allows for the orchestration and automation of security policies across the entire infrastructure. This integration enhances visibility, simplifies management, and strengthens the overall security posture.

Advanced Threat Prevention and Detection

VMware NSX incorporates advanced threat prevention and detection capabilities through integration with security solutions such as intrusion detection and prevention systems (IDPS) and security information and event management (SIEM) platforms. These capabilities enable organizations to proactively identify and mitigate potential threats, minimizing the risk of successful attacks.

Conclusion:

VMware NSX provides a comprehensive and robust security framework that enhances network protection in today’s dynamic and evolving threat landscape. Its micro-segmentation capabilities, distributed firewall, integration with the security ecosystem, and advanced threat prevention and detection features make it a powerful solution for organizations seeking to bolster their security defenses. By adopting VMware NSX, organizations can achieve a higher level of network security, ensuring the confidentiality, integrity, and availability of their critical assets.

opencontrail

OpenContrail

OpenContrail

In today's fast-paced world, where cloud computing and virtualization have become the norm, the need for efficient and flexible networking solutions has never been greater. OpenContrail, an open-source software-defined networking (SDN) solution, has emerged as a powerful tool. This blog post explores the capabilities, benefits, and significance of OpenContrail in revolutionizing network management and delivering enhanced connectivity in the cloud era.

OpenContrail, initially developed by Juniper Networks, is an open-source SDN platform offering comprehensive network capabilities for cloud environments. It provides a scalable and flexible network infrastructure that enables automation, network virtualization, and secure multi-tenancy across distributed cloud deployments.

OpenContrail, an open-source network virtualization platform, is designed to simplify the management and orchestration of virtual networks. Built on well-established technologies such as OpenStack and SDN, it provides a comprehensive set of tools and APIs to create and manage virtualized network services. With OpenContrail, organizations can achieve greater scalability, security, and performance while reducing operational complexities.

Virtual Network Overlays: OpenContrail leverages virtual network overlays to create isolated and secure network segments, allowing for seamless multi-tenancy and network segmentation.

Network Policy and Security: It offers fine-grained network policies to control traffic flow, implement access control, and enforce security measures at the virtual network level.

Analytics and Monitoring: OpenContrail provides advanced analytics and monitoring capabilities, allowing administrators to gain insights into network performance, troubleshoot issues, and optimize resource allocation.

Cloud Service Providers: OpenContrail empowers cloud service providers to deliver scalable and secure network services to their customers. It enables seamless provisioning of virtual networks, ensuring high-performance connectivity and efficient resource utilization.

Enterprise Networks: Enterprises can leverage OpenContrail to build agile and flexible network infrastructures. It simplifies network management, enables seamless integration with existing infrastructure, and provides enhanced security measures.

Internet of Things (IoT): With the proliferation of IoT devices, OpenContrail offers a robust solution for managing and securing large-scale IoT deployments. It enables efficient communication between devices, ensures data privacy, and provides centralized control over IoT network resources.

OpenContrail proves to be a groundbreaking solution in the realm of network virtualization. Its feature-rich architecture, open-source nature, and diverse real-world applications make it an invaluable tool for organizations seeking to optimize network performance, enhance security, and embrace the future of virtualized networks.

Highlights: OpenContrail

Understanding OpenContrail

OpenContrail is an open-source software-defined networking (SDN) solution that enables the creation and management of virtual networks. It provides a scalable and flexible networking platform that simplifies network provisioning, enhances security, and optimizes network performance. By leveraging OpenContrail, organizations can effectively address the challenges posed by traditional networking approaches.

**Key Features and Benefits**

OpenContrail offers a wide range of powerful features that set it apart from traditional networking solutions. One of its key features is network virtualization, which allows the creation of isolated virtual networks within a physical network infrastructure.

This enables organizations to achieve greater agility and scalability, as well as efficient resource utilization. Additionally, OpenContrail provides advanced security measures, including micro-segmentation, that help protect sensitive data and prevent unauthorized access.

**Use Cases and Industry Applications**

OpenContrail is versatile and can be applied across various industries and use cases. In the telecommunications sector, it supports network slicing and virtual network functions (VNFs), crucial for deploying 5G networks. Enterprises use OpenContrail to create agile and scalable cloud environments, facilitating faster application deployment and improving overall operational efficiency.

Additionally, OpenContrail’s robust security features make it a preferred choice for sectors that require stringent data protection measures, such as finance and healthcare. By providing micro-segmentation and advanced threat detection, OpenContrail helps organizations safeguard their sensitive information.

Open-source network virtualization platform

OpenContrail is an open-source network virtualization platform that enables the creation of virtual networks overlaying physical infrastructure. It provides a scalable and flexible solution for managing network resources, improving security, and enhancing overall network performance. By decoupling the network control plane from the data plane, OpenContrail brings a new level of agility and efficiency to network operations.

1. Virtual Network Creation: OpenContrail allows the creation of virtual networks, each with its own isolated environment, policies, and routing tables. This enables organizations to achieve multi-tenancy and securely isolate their applications and workloads.

2. Network Automation and Orchestration: With OpenContrail, network provisioning and management become automated and orchestrated. This reduces manual configuration efforts and brings more consistency and reliability to network operations.

3. Enhanced Security: OpenContrail provides advanced security features such as micro-segmentation, distributed firewalling, and traffic isolation. These capabilities ensure that applications and data remain protected and isolated, even in complex and dynamic network environments.

Understanding OpenContrail components

Controller Node: At the heart of OpenContrail lies the Controller Node, which acts as the brain of the network. It is responsible for managing and orchestrating all the network services, including configuration, control, and analytics. Through its intuitive and user-friendly interface, network administrators can easily define and enforce policies, monitor network performance, and troubleshoot issues.

vRouter: The vRouter, short for virtual router, is a critical component of OpenContrail that ensures efficient packet forwarding within the network. By combining the power of virtualization and routing, the vRouter enables seamless communication between virtual machines and physical hosts. It provides advanced networking capabilities, such as firewalling, NAT, and VPN, while ensuring high performance and scalability.

Analytics Node: To gain valuable insights into network behavior and performance, OpenContrail incorporates an Analytics Node. This component collects and analyzes network data, generating comprehensive reports and metrics. Network operators can leverage this information to optimize network utilization, identify bottlenecks, and proactively address potential issues. The Analytics Node plays a crucial role in ensuring the reliability and efficiency of the entire network infrastructure.

Web User Interface: OpenContrail offers a user-friendly Web User Interface (UI) that simplifies network management and configuration. With its intuitive design and powerful functionalities, network administrators can easily define network topologies, set up policies, and monitor network performance in real time. The Web UI provides a centralized platform for managing the entire network infrastructure, making deploying, scaling, and maintaining OpenContrail deployments easier.

The traditional network vs. SDN network

In a traditional network, each switch/router must be programmed individually because applications are loaded. These applications could include a load balancer, intrusion detection, monitoring, or Voice over IP (VoIP). Based on local logic, each switch/router decides where to route packets as traffic flows through the network. Changing applications or flows in this network requires systematically programming each switch/router.

A traditional network includes both a control plane and a forwarding plane. There are also applications loaded on each device, which must be configured separately.

In an SDN network, a switch/router is not connected to any applications or intelligence. By centralized control of all devices, the network becomes programmable. A controller interfaces with applications, which are then executed across a network. Traffic flows are now supervised by a centralized controller that distributes and manages a flow table for each switch/router. Several factors can be used to define very flexible flow tables.

The flow table also collects statistics, which are fed up to the controller. This improves both visibility and control of the network because issues are immediately reported to the controller, which, in turn, can make immediate adjustments across the entire network.

The role of The VM

Virtual machines have been around for a long time, but we are beginning to spread our computing workloads in several ways. When you throw in docker containers and bare metal servers, networking becomes more interesting. Network challenges arise when all these components require communication within the same subnet, access to Internet gateways, and Layer 3 MPLS/VPNs.

As a result, data center networks are moving towards IP underlay fabrics and Layer 2 overlays. Layer 3 data plane forwarding utilizes efficient Equal-cost multi-path routing (ECMP), but we lack Layer 2 multipathing by default. Now, similar to an SD WAN overlay approach, we can connect dispersed layer 2 segments and leverage all the good features of the IP underlay. To provide Layer 2 overlays and network virtualization, Juniper has introduced an SDN platform called Junipers OpenContrail in direct competition with

Virtualization

For additional pre-information, you may find the following post of use.

  1. ACI Cisco
  2. Network Traffic Engineering
  3. Spine Leaf Architecture
  4. IP Forwarding
  5. SDN Data Center
  6. Network Overlays
  7. Application Traffic Steering
  8. What is BGP Protocol in Networking

Highlights: OpenContrail

Key Features and Benefits:

Network Virtualization:

OpenContrail leverages network virtualization techniques to provide isolated virtual networks within a shared physical infrastructure. It offers a logical abstraction layer, enabling the creation of virtual networks that operate independently, complete with their own routing, security, and quality of service policies. This approach allows for the efficient utilization of resources, simplified network management, and improved scalability.

Secure Multi-Tenancy:

OpenContrail’s security features ensure tenants’ data and applications remain isolated and protected from unauthorized access. It employs micro-segmentation to enforce strict access control policies at the virtual machine level, reducing the risk of lateral movement within the network. Additionally, OpenContrail integrates with existing security solutions, enabling the implementation of comprehensive security measures.

Intelligent Automation:

OpenContrail automates various network provisioning, configuration, and management tasks, reducing manual intervention and minimizing human errors. Its programmable API and centralized control plane simplify the deployment of complex network topologies, accelerate service delivery, and enhance overall operational efficiency.

Scalability and Flexibility:

OpenContrail’s architecture is designed to scale seamlessly, supporting distributed cloud deployments across multiple locations. It offers a highly flexible solution that can adapt to changing network requirements, allowing administrators to dynamically allocate resources, establish new connectivity, and respond to evolving business needs.

OpenContrail in Practice:

OpenContrail has gained significant traction among cloud providers, service providers, and enterprises seeking to build robust, scalable, and secure networks. Its open-source nature has facilitated its adoption, encouraging collaboration, innovation, and customization. OpenContrail’s community-driven development model ensures continuous improvement and the availability of new features and enhancements.

opencontrail
Diagram: OpenContrail.

Highlighting Junipers OpenContrail

OpenContrail is an open-source network virtualization platform. The commercial controller and open-source product are identical; they share the same checksum on the binary image. Maintenance and support are the only difference. Juniper decided to open source to fit into the open ecosystem, which wouldn’t have worked in a closed environment.

OpenContrail offers features similar to VMware NSX, can apply service chaining and high-level security policies, and provides connections to Layer 3 VPNs for WAN integration. OpenContrail works with any hardware, but integration with Juniper’s product sets offers additional rich analytics for the underlay network.

Underlay and overlay network visibility are essential for troubleshooting. You need to look further than the first header of the packet; you need to look deeper into the tunnel to understand what is happening entirely. 

Network virtualization – Isolated networks

With a cloud architecture, network virtualization gives the illusion that each tenant has a separate isolated network. Virtual networks are independent of physical network location or state, and nodes within the physical underlay can fail without disrupting the overlay tenant. A tenant may be a customer or department, depending if it’s a public or private cloud.

The virtual network sits on top of a physical network, the same way the compute virtual machines sit on top of a physical server. Virtual networks are not created with VLANs; Contrail uses a virtual overlay network system for multi-tenancy and cross-tenant communication. Many problems exist with large-scale VLAN deployments for multi-tenancy in today’s networks.

They introduce a lot of states in the physical network, and the Spanning Tree Protocol (STP) also introduces well-documented problems. There are technologies (THRILL, SPB) to overcome these challenges, but they add complexity to the design of the network.

Service Chaining

Customers require the ability to apply policy at virtual network boundaries. Policies may include ACL and stateless firewalls provided within the virtual switch. However, once you require complicated policy pieces between virtual networks, you need a more sophisticated version of policy control and orchestration called service chaining. Service chaining applies intelligent services between traffic from one tenant to another.

For example, if a customer requires content caching and stateful services, you must introduce additional service appliances and force next-hop traffic through these appliances. Once you deploy a virtual appliance, you need a scale-out architecture.

The ability to Scale-out

Scale-out is the ability to instantiate multiple physical and virtual machine instances and load balance traffic across them. Customers may also require the ability to connect with different tenants in dispersed geographic locations or to workloads in a remote private cloud or public cloud. Usually, people build a private cloud for the norm and then burst into a public cloud. 

Juniper has implemented a virtual networking architecture that meets these requirements. It is based on well-known technology, MPLS/layer 3 VPN. MPLS/layer 3 VPN is the base for Juniper designs.

MPLS Overlay

Virtual Network Implementation

A – MPLS Overlay

The SDN controller is responsible for the networking aspects of virtualization. When creating virtual networks, initiate the Northbound API and issue an instruction that attaches the VM to the VN. The network responsibilities are delegated from Cloudstack or OpenStack to Contrail. The Contrail SDN controller automatically creates the overlay tunnel between virtual machines. The overlay can be either an MPLS overlay style with MPLS-over-GREMPLS-over-UDP, or VXLAN

L3VPN for routed traffic and EVPN for bridged traffic

Juniper’s OpenContrail is still a pure MPLS overlay of MPLS/VPN, using L3VPN for routed traffic and EVPN for bridged traffic. Traffic forwarding between end nodes has one MPLS label (VPN label), but they use various encapsulation methods to carry labeled traffic across the IP fabric. As mentioned above, this includes MPLS-over-GRE – a traditional encapsulation mechanism, MPLS-over-UDP – a variation of MPLS-over-GRE that replaces the GRE headers with UDP headers. MPLS-over-VXLAN uses VXLAN packet format but stores the MPLS label in the Virtual Network Identifier (VNI) field.

B – The forwarding plane

The forwarding plane takes the packet from the VM and gives it to the “Vrouter,” which does a lookup and determines if the destination is a remote network. If it is, it encapsulates the packet and sends it across the tunnel. The underlay that sites between the workloads forward is based on tunnel source and destination only.

No state belongs to end hosts ‘VMs, MAC addresses, or IPs. This type of architecture gives the Core a cleaner and more precise role. Generally, as a best practice, keeping “state” in the Core is a lousy design principle.

C – Northbound and southbound interfaces

To implement policy and service chaining, use the Northbound Interface and express your policy at a high level. For example, you may require HTTP or NAT and force traffic via load balancers or virtual firewalls. Contrail does this automatically and issues instructions to the Vrouter, forcing traffic to the correct virtual appliance. In addition, it can create all the suitable routes and tunnels, causing traffic through the proper sequence of virtual machines.

Contrail achieves this automatically with southbound protocols, such as XMPP (Extensible Messaging and Presence Protocol) or BGP. XMPP is a communications protocol based on XML (Extensible Markup Language).

WAN Integration

Junipers OpenContrail can connect virtual networks to external Layer 3 MPLS VPN for WAN integration. In addition, they gave the controller the ability to peer BGP to gateway routers. For the data plane, they support MPLS-over-GRE, and for the control plane, they speak MP-BGP.

Contrail communicates directly with PE routers, exchanging VPNv4 routes with MP-BGP and using MPLS-over-GRE encapsulation to pass IP traffic between hypervisor hosts and PE routers. Using standards-based protocols lets you choose any hardware appliance as the gateway node.

mpls overaly

This data and control plane makes integration to an MPLS/VPN backbone a simple task. First, MP-BGP between the controllers and PE-routers should be established. Inter-AS Option B next hop self-approach should be used to demonstrate some demarcation points.

OpenContrail has emerged as a game-changer in software-defined networking, empowering organizations to build agile, secure, and scalable networks in the cloud era. With its advanced features, such as network virtualization, secure multi-tenancy, intelligent automation, and scalability, OpenContrail offers a comprehensive solution that addresses the complex networking challenges of modern cloud environments.

As the demand for efficient and flexible network management continues to rise, OpenContrail provides a compelling option for organizations looking to optimize their network infrastructure and unlock the full potential of the cloud.

Summary: OpenContrail

OpenContrail is a powerful open-source software-defined networking (SDN) solution revolutionizing network management and connectivity. In this blog post, we will explore its key features, benefits, and use cases and showcase how it empowers organizations to build robust and scalable networks.

Understanding OpenContrail

OpenContrail, developed by Juniper Networks, is an open-source SDN controller that provides network virtualization and automation capabilities. It is a single control point for managing and orchestrating network resources, enabling organizations to simplify network operations and enhance flexibility. By decoupling the network control plane from the underlying physical infrastructure, OpenContrail brings agility and scalability to modern networks.

Key Features of OpenContrail

OpenContrail offers a wide range of features, making it a preferred choice for network administrators. Some notable features include:

1. Virtual Network Overlay: OpenContrail creates virtual network overlays, allowing multiple virtual networks to coexist on a shared physical infrastructure. This isolation ensures enhanced security and enables efficient resource utilization.

2. Policy-Driven Automation: With policy-driven automation, network administrators can define and enforce network policies and access controls across the infrastructure. OpenContrail simplifies the management and enforcement of complex policies, reducing operational overhead.

3. Analytics and Monitoring: OpenContrail provides extensive analytics and monitoring capabilities, offering real-time insights into network traffic, performance, and security. These insights help administrators optimize network resources and troubleshoot issues effectively.

Use Cases of OpenContrail

OpenContrail finds applications in various use cases across industries. Some prominent use cases include:

1. Cloud Infrastructure: OpenContrail enables cloud service providers to build and manage scalable and secure cloud infrastructures. It facilitates seamless integration with popular cloud platforms and offers rich networking capabilities.

2. Data Centers: OpenContrail simplifies network management in data center environments. It provides dynamic workload placement, automated provisioning, and seamless connectivity between virtual machines and containers, ensuring efficient resource utilization.

3. Multi-Cloud Networking: OpenContrail supports multi-cloud networking, allowing organizations to connect and manage multiple cloud environments securely. It provides seamless connectivity, consistent policies, and centralized control across cloud providers.

Conclusion:

OpenContrail presents a game-changing solution for organizations seeking to enhance their networking capabilities. With its rich feature set, including virtual network overlays, policy-driven automation, and advanced analytics, OpenContrail empowers organizations to build scalable, secure, and agile networks. Whether it’s cloud infrastructure, data centers, or multi-cloud networking, OpenContrail is a reliable and versatile SDN solution.