opencontrail

OpenContrail

OpenContrail

In today's fast-paced world, where cloud computing and virtualization have become the norm, the need for efficient and flexible networking solutions has never been greater. OpenContrail, an open-source software-defined networking (SDN) solution, has emerged as a powerful tool. This blog post explores the capabilities, benefits, and significance of OpenContrail in revolutionizing network management and delivering enhanced connectivity in the cloud era.

OpenContrail, initially developed by Juniper Networks, is an open-source SDN platform offering comprehensive network capabilities for cloud environments. It provides a scalable and flexible network infrastructure that enables automation, network virtualization, and secure multi-tenancy across distributed cloud deployments.

OpenContrail, an open-source network virtualization platform, is designed to simplify the management and orchestration of virtual networks. Built on well-established technologies such as OpenStack and SDN, it provides a comprehensive set of tools and APIs to create and manage virtualized network services. With OpenContrail, organizations can achieve greater scalability, security, and performance while reducing operational complexities.

1. Virtual Network Overlays: OpenContrail leverages virtual network overlays to create isolated and secure network segments, allowing for seamless multi-tenancy and network segmentation.

2. Network Policy and Security: It offers fine-grained network policies to control traffic flow, implement access control, and enforce security measures at the virtual network level.

3. Analytics and Monitoring: OpenContrail provides advanced analytics and monitoring capabilities, allowing administrators to gain insights into network performance, troubleshoot issues, and optimize resource allocation.

1. Cloud Service Providers: OpenContrail empowers cloud service providers to deliver scalable and secure network services to their customers. It enables seamless provisioning of virtual networks, ensuring high-performance connectivity and efficient resource utilization.

2. Enterprise Networks: Enterprises can leverage OpenContrail to build agile and flexible network infrastructures. It simplifies network management, enables seamless integration with existing infrastructure, and provides enhanced security measures.

3. Internet of Things (IoT): With the proliferation of IoT devices, OpenContrail offers a robust solution for managing and securing large-scale IoT deployments. It enables efficient communication between devices, ensures data privacy, and provides centralized control over IoT network resources.

Conclusion: OpenContrail proves to be a groundbreaking solution in the realm of network virtualization. Its feature-rich architecture, open-source nature, and diverse real-world applications make it an invaluable tool for organizations seeking to optimize network performance, enhance security, and embrace the future of virtualized networks.

Highlights: OpenContrail

The traditional network vs. SDN network

In a traditional network, each switch/router must be programmed individually because applications are loaded. These applications could include a load balancer, intrusion detection, monitoring, or Voice over IP (VoIP). Based on local logic, each switch/router decides where to route packets as traffic flows through the network. Changing applications or flows in this network requires systematically programming each switch/router.

A traditional network includes both a control plane and a forwarding plane. There are also applications loaded on each device, which must be configured separately.

In an SDN network, a switch/router is not connected to any applications or intelligence. By centralized control of all devices, the network becomes programmable. A controller interfaces with applications, which are then executed across a network. Traffic flows are now supervised by a centralized controller that distributes and manages a flow table for each switch/router. Several factors can be used to define very flexible flow tables.

The flow table also collects statistics, which are fed up to the controller. This improves both visibility and control of the network because issues are immediately reported to the controller, which, in turn, can make immediate adjustments across the entire network.

The role of The VM

Virtual machines have been around for a long time, but we are beginning to spread our computing workloads in several ways. When you throw in docker containers and bare metal servers, networking becomes more interesting. Network challenges arise when all these components require communication within the same subnet, access to Internet gateways, and Layer 3 MPLS/VPNs.

As a result, data center networks are moving towards IP underlay fabrics and Layer 2 overlays. Layer 3 data plane forwarding utilizes efficient Equal-cost multi-path routing (ECMP), but we lack Layer 2 multipathing by default. Now, similar to an SD WAN overlay approach, we can connect dispersed layer 2 segments and leverage all the good features of the IP underlay. To provide Layer 2 overlays and network virtualization, Juniper has introduced an SDN platform called Junipers OpenContrail in direct competition with

Virtualization

For additional pre-information, you may find the following post of use.

  1. ACI Cisco
  2. Network Traffic Engineering
  3. Spine Leaf Architecture
  4. IP Forwarding
  5. SDN Data Center
  6. Network Overlays
  7. Application Traffic Steering
  8. What is BGP Protocol in Networking



MPLS Overlay

Key OpenContrail Discussion Points:


  • Introduction to the OpenContrail solution and what is involved.

  • Highlighting data center networks and ECMP.

  • Critical points on network virtualization.

  • Technical details on the virtual overlay network.

  • Technical details virtual network implementation.

  • Layer 2 VPN and EVPN.

Back to Basics with OpenContrail

Key Features and Benefits:

Network Virtualization:

OpenContrail leverages network virtualization techniques to provide isolated virtual networks within a shared physical infrastructure. It offers a logical abstraction layer, enabling the creation of virtual networks that operate independently, complete with their own routing, security, and quality of service policies. This approach allows for the efficient utilization of resources, simplified network management, and improved scalability.

Secure Multi-Tenancy:

OpenContrail’s security features ensure tenants’ data and applications remain isolated and protected from unauthorized access. It employs micro-segmentation to enforce strict access control policies at the virtual machine level, reducing the risk of lateral movement within the network. Additionally, OpenContrail integrates with existing security solutions, enabling the implementation of comprehensive security measures.

Intelligent Automation:

OpenContrail automates various network provisioning, configuration, and management tasks, reducing manual intervention and minimizing human errors. Its programmable API and centralized control plane simplify the deployment of complex network topologies, accelerate service delivery, and enhance overall operational efficiency.

Scalability and Flexibility:

OpenContrail’s architecture is designed to scale seamlessly, supporting distributed cloud deployments across multiple locations. It offers a highly flexible solution that can adapt to changing network requirements, allowing administrators to dynamically allocate resources, establish new connectivity, and respond to evolving business needs.

OpenContrail in Practice:

OpenContrail has gained significant traction among cloud providers, service providers, and enterprises seeking to build robust, scalable, and secure networks. Its open-source nature has facilitated its adoption, encouraging collaboration, innovation, and customization. OpenContrail’s community-driven development model ensures continuous improvement and the availability of new features and enhancements.

opencontrail
Diagram: OpenContrail.

Highlighting Junipers OpenContrail

OpenContrail is an open-source network virtualization platform. The commercial controller and open-source product are identical; they share the same checksum on the binary image. Maintenance and support are the only difference. Juniper decided to open source to fit into the open ecosystem, which wouldn’t have worked in a closed environment.

OpenContrail offers features similar to VMware NSX, can apply service chaining and high-level security policies, and provides connections to Layer 3 VPNs for WAN integration. OpenContrail works with any hardware, but integration with Juniper’s product sets offers additional rich analytics for the underlay network.

Underlay and overlay network visibility are essential for troubleshooting. You need to look further than the first header of the packet; you need to look deeper into the tunnel to understand what is happening entirely. 

Network virtualization – Isolated networks

With a cloud architecture, network virtualization gives the illusion that each tenant has a separate isolated network. Virtual networks are independent of physical network location or state, and nodes within the physical underlay can fail without disrupting the overlay tenant. A tenant may be a customer or department, depending if it’s a public or private cloud.

The virtual network sits on top of a physical network, the same way the compute virtual machines sit on top of a physical server. Virtual networks are not created with VLANs; Contrail uses a virtual overlay network system for multi-tenancy and cross-tenant communication. Many problems exist with large-scale VLAN deployments for multi-tenancy in today’s networks.

They introduce a lot of states in the physical network, and the Spanning Tree Protocol (STP) also introduces well-documented problems. There are technologies (THRILL, SPB) to overcome these challenges, but they add complexity to the design of the network.

Service Chaining

Customers require the ability to apply policy at virtual network boundaries. Policies may include ACL and stateless firewalls provided within the virtual switch. However, once you require complicated policy pieces between virtual networks, you need a more sophisticated version of policy control and orchestration called service chaining. Service chaining applies intelligent services between traffic from one tenant to another.

For example, if a customer requires content caching and stateful services, you must introduce additional service appliances and force next-hop traffic through these appliances. Once you deploy a virtual appliance, you need a scale-out architecture.

The ability to Scale-out

Scale-out is the ability to instantiate multiple physical and virtual machine instances and load balance traffic across them. Customers may also require the ability to connect with different tenants in dispersed geographic locations or to workloads in a remote private cloud or public cloud. Usually, people build a private cloud for the norm and then burst into a public cloud. 

Juniper has implemented a virtual networking architecture that meets these requirements. It is based on well-known technology, MPLS/layer 3 VPN. MPLS/layer 3 VPN is the base for Juniper designs.

MPLS Overlay

Junipers OpenContrail: Virtual Network Implementation 

MPLS Overlay

The SDN controller is responsible for the networking aspects of virtualization. When creating virtual networks, initiate the Northbound API and issue an instruction that attaches the VM to the VN. The network responsibilities are delegated from Cloudstack or OpenStack to Contrail. The Contrail SDN controller automatically creates the overlay tunnel between virtual machines. The overlay can be either an MPLS overlay style with MPLS-over-GREMPLS-over-UDP, or VXLAN

  • L3VPN for routed traffic and EVPN for bridged traffic

Juniper’s OpenContrail is still a pure MPLS overlay of MPLS/VPN, using L3VPN for routed traffic and EVPN for bridged traffic. Traffic forwarding between end nodes has one MPLS label (VPN label), but they use various encapsulation methods to carry labeled traffic across the IP fabric. As mentioned above, this includes MPLS-over-GRE – a traditional encapsulation mechanism, MPLS-over-UDP – a variation of MPLS-over-GRE that replaces the GRE headers with UDP headers. MPLS-over-VXLAN uses VXLAN packet format but stores the MPLS label in the Virtual Network Identifier (VNI) field.

The forwarding plane

The forwarding plane takes the packet from the VM and gives it to the “Vrouter,” which does a lookup and determines if the destination is a remote network. If it is, it encapsulates the packet and sends it across the tunnel. The underlay that sites between the workloads forward is based on tunnel source and destination only.

No state belongs to end hosts ‘VMs, MAC addresses, or IPs. This type of architecture gives the Core a cleaner and more precise role. Generally, as a best practice, keeping “state” in the Core is a lousy design principle.

Northbound and southbound interfaces

To implement policy and service chaining, use the Northbound Interface and express your policy at a high level. For example, you may require HTTP or NAT and force traffic via load balancers or virtual firewalls. Contrail does this automatically and issues instructions to the Vrouter, forcing traffic to the correct virtual appliance. In addition, it can create all the suitable routes and tunnels, causing traffic through the proper sequence of virtual machines.

Contrail achieves this automatically with southbound protocols, such as XMPP (Extensible Messaging and Presence Protocol) or BGP. XMPP is a communications protocol based on XML (Extensible Markup Language).

WAN Integration

Junipers OpenContrail can connect virtual networks to external Layer 3 MPLS VPN for WAN integration. In addition, they gave the controller the ability to peer BGP to gateway routers. For the data plane, they support MPLS-over-GRE, and for the control plane, they speak MP-BGP.

Contrail communicates directly with PE routers, exchanging VPNv4 routes with MP-BGP and using MPLS-over-GRE encapsulation to pass IP traffic between hypervisor hosts and PE routers. Using standards-based protocols lets you choose any hardware appliance as the gateway node.

mpls overaly

This data and control plane makes integration to an MPLS/VPN backbone a simple task. First, MP-BGP between the controllers and PE-routers should be established. Inter-AS Option B next hop self-approach should be used to demonstrate some demarcation points.

OpenContrail has emerged as a game-changer in software-defined networking, empowering organizations to build agile, secure, and scalable networks in the cloud era. With its advanced features, such as network virtualization, secure multi-tenancy, intelligent automation, and scalability, OpenContrail offers a comprehensive solution that addresses the complex networking challenges of modern cloud environments. As the demand for efficient and flexible network management continues to rise, OpenContrail provides a compelling option for organizations looking to optimize their network infrastructure and unlock the full potential of the cloud.

 

Summary: OpenContrail

OpenContrail is a powerful open-source software-defined networking (SDN) solution revolutionizing network management and connectivity. In this blog post, we will explore its key features, benefits, and use cases and showcase how it empowers organizations to build robust and scalable networks.

Understanding OpenContrail

OpenContrail, developed by Juniper Networks, is an open-source SDN controller that provides network virtualization and automation capabilities. It is a single control point for managing and orchestrating network resources, enabling organizations to simplify network operations and enhance flexibility. By decoupling the network control plane from the underlying physical infrastructure, OpenContrail brings agility and scalability to modern networks.

Key Features of OpenContrail

OpenContrail offers a wide range of features, making it a preferred choice for network administrators. Some notable features include:

1. Virtual Network Overlay: OpenContrail creates virtual network overlays, allowing multiple virtual networks to coexist on a shared physical infrastructure. This isolation ensures enhanced security and enables efficient resource utilization.

2. Policy-Driven Automation: With policy-driven automation, network administrators can define and enforce network policies and access controls across the infrastructure. OpenContrail simplifies the management and enforcement of complex policies, reducing operational overhead.

3. Analytics and Monitoring: OpenContrail provides extensive analytics and monitoring capabilities, offering real-time insights into network traffic, performance, and security. These insights help administrators optimize network resources and troubleshoot issues effectively.

Use Cases of OpenContrail

OpenContrail finds applications in various use cases across industries. Some prominent use cases include:

1. Cloud Infrastructure: OpenContrail enables cloud service providers to build and manage scalable and secure cloud infrastructures. It facilitates seamless integration with popular cloud platforms and offers rich networking capabilities.

2. Data Centers: OpenContrail simplifies network management in data center environments. It provides dynamic workload placement, automated provisioning, and seamless connectivity between virtual machines and containers, ensuring efficient resource utilization.

3. Multi-Cloud Networking: OpenContrail supports multi-cloud networking, allowing organizations to connect and manage multiple cloud environments securely. It provides seamless connectivity, consistent policies, and centralized control across cloud providers.

Conclusion:

OpenContrail presents a game-changing solution for organizations seeking to enhance their networking capabilities. With its rich feature set, including virtual network overlays, policy-driven automation, and advanced analytics, OpenContrail empowers organizations to build scalable, secure, and agile networks. Whether it’s cloud infrastructure, data centers, or multi-cloud networking, OpenContrail is a reliable and versatile SDN solution.

container based virtualization

Cisco Switch Virtualization Nexus 1000v

Cisco Switch Virtualization Nexus 1000v

Virtualization has become integral to modern data centers in today's digital landscape. With the increasing demand for agility, flexibility, and scalability, organizations are turning to virtual networking solutions to meet their evolving needs. One such solution is the Nexus 1000v, a virtual network switch offering comprehensive features and functionalities. In this blog post, we will delve into the world of the Nexus 1000v, exploring its key features, benefits, and use cases.

The Nexus 1000v is a distributed virtual switch that operates at the hypervisor level, providing advanced networking capabilities for virtual machines (VMs). It is designed to integrate seamlessly with VMware vSphere, offering enhanced network visibility, control, and security.

Cisco Switch Virtualization is a revolutionary concept that allows network administrators to create multiple virtual switches on a single physical switch. By abstracting the network functions from the hardware, it provides enhanced flexibility, scalability, and efficiency. With Cisco Switch Virtualization, businesses can maximize resource utilization and simplify network management.

At the forefront of Cisco's Switch Virtualization portfolio is the Nexus 1000v. This powerful platform brings the benefits of virtualization to the data center, enabling seamless integration between virtual and physical networks. By extending Cisco's renowned networking capabilities into the virtual environment, Nexus 1000v empowers organizations to achieve consistent policy enforcement, enhanced security, and simplified operations.

The Nexus 1000v boasts a wide range of features that make it a compelling choice for network administrators. From advanced network segmentation and traffic isolation to granular policy control and deep visibility, this platform has it all. By leveraging the power of Cisco's Virtual Network Services (VNS), organizations can optimize their network infrastructure, streamline operations, and deliver superior performance.

Deploying Cisco Switch Virtualization, specifically the Nexus 1000v, requires careful planning and consideration. Organizations must evaluate their network requirements, ensure compatibility with existing infrastructure, and adhere to best practices. From designing a scalable architecture to implementing proper security measures, attention to detail is crucial to achieve a successful deployment.

To truly understand the impact of Cisco Switch Virtualization, it's essential to explore real-world use cases and success stories. From large enterprises to service providers, organizations across various industries have leveraged the power of Nexus 1000v to transform their networks. This section will highlight a few compelling examples, showcasing the versatility and value that Cisco Switch Virtualization brings to the table.

Highlights: Cisco Switch Virtualization Nexus 1000v

Hypervisor and vSphere Introduction

An operating system can run multiple operating systems on a single hardware host using a hypervisor, also known as a virtual machine manager. Operating systems use the host’s processor, memory, and other resources. Hypervisors control the host processor, memory, and other resources and allocate what each operating system needs. Hypervisors run guest operating systems or virtual machines on top of them.

Designed specifically for integration with VMware vSphere environments, the Cisco Nexus 1000V Series Switch runs Cisco NX-OS software. Enterprise-class performance, scalability, and scalability are delivered by VMware vSphere 2.0 across multiple platforms. Within the VMware ESX hypervisor, the Nexus 1000V runs. With the Cisco Nexus 1000V Series, you can take advantage of Cisco VN-Link server virtualization technology

• Policy-based virtual machine (VM) connectivity

• Mobile VM security

• Network policy

Nondisruptive operational model for your server virtualization and networking teams

As with physical servers, virtual servers can be configured with the same network configuration, security policy, diagnostic tools, and operational models as physical servers. The Cisco Nexus 1000V Series is also compatible with VMware vSphere, vCenter, ESX, and ESXi.

A brief overview of the Nexus 1000V system

There are two primary components of the Cisco Nexus 1000V Series switch:

VEM (Virtual Ethernet Module): Executes inside hypervisors

VSM (External Virtual Supervisor Module): Manages VEMs

Nexus 1000v implements a generic concept of Cisco Distributed Virtual Switch (DVS). VMware ESX or ESXi executes the Cisco Nexus 1000V Virtual Ethernet Module (VEM). The VEM’s application programming interface (API) is VMware vNetwork Distributed Switch (vDS). By integrating the API with VMware VMotion and Distributed Resource Scheduler (DRS), advanced networking capabilities can be provided to virtual machines. In the VEM, Layer 2 switching and advanced networking functions are performed based on configuration information from the VSM:

Nexus Switch Virtualization

Virtual routing and forwarding

Virtual routing and forwarding form the basis of this stack. Firstly, network virtualization comes with two primary methods: 1) One too many and 2) Many to one.  The “one too many” network virtualization method means you segment one physical network into multiple logical segments. Conversely, the “many to one” network virtualization method consolidates numerous physical devices into one logical entity. By definition, they seem to be opposites, but they fall under the same umbrella in network virtualization.

Before you proceed, you may find the following posts helpful:

  1. Container Based Virtualization
  2. Virtual Switch
  3. What is VXLAN
  4. Redundant Links
  5. WAN Virtualization
  6. What Is FabricPath

Cisco Switch Virtualization.

Key Nexus 1000v Discussion Points:


  • Introduction to Nexus1000v and what is involved.

  • Highlighting the details on Cisco switch virtualization. Logical separation. 

  • Technical details on the additional overhead from virtualization.

  • Scenario: Network virtualization.

  • A final note on software virtual switch designs.

Back to basics with network virtualization

Before we get stuck in Cisco virtualization, let us address some basics. For example, if you have multiple virtual endpoints share a physical network. Still, different virtual endpoints belong to various customers, and the communication between these endpoints also needs to be isolated. In other words, the network is a resource, too, and network virtualization is the technology that enables the sharing of a standard physical network infrastructure.

Virtualization uses software to simulate traditional hardware platforms and create virtual software-based systems. For example, virtualization allows specialists to construct a single virtual network or partition a physical network into multiple virtual networks.

Cisco Switch Virtualization: Logical segmentation: One too many

We have one-to-many network virtualization for the Cisco switch virtualization design; a single physical network is logically segmented into multiple virtual networks. For example, each virtual network could correspond to a user group or a specific security function.

End-to-end path isolation requires the virtualization of networking devices and their interconnecting links. VLANs have been traditionally used, and hosts from one user group are mapped to a single VLAN. To extend the path across multiple switches at Layer 2, VLAN tagging (802.1Q) can carry VLAN information between switches. These VLAN trunks were created to transport multiple VLANs over a single Ethernet interface.

The diagram below displays two independent VLANs, VLAN201 and VLAN101. These VLANs can share one physical wire to provide L2 reachability between hosts connected to Switch B and Switch A via Switch C, but they remain separate entities.

Nexus1000v
Nexus1000v: The operation

VLANs are sufficient for small Layer 2 segments. However, today’s networks will likely have a mix of Layer 2 and 3 routed networks. In this case, Layer 2 VLANs alone are insufficient because you must extend the Layer 2 isolation over a Layer 3 device. This can be achieved by using Virtual Routing and Forwarding ( VRF ), the next step in the Cisco switch virtualization. A virtual routing and forwarding instance logically carves a Layer 3 device into several isolated independent L3 devices. The virtual routing and forwarding configured locally cannot communicate directly.

The diagram below displays one physical Layer 3 router with three VRFs: VRF Yellow, VRF Red, and VRF Blue. These virtual routing and forwarding instances are completely separated; without explicit configuration, routes in one virtual routing and forwarding instance cannot be leaked to another.

Virtual Routing and Forwarding

virtual routing and forwarding

The virtualization of the interconnecting links depends on how the virtual routers are connected. If they are physically ( directly ) connected, you could use a technology known as VRF-lite to separate traffic and 802.1Q to label the data plane. This is known as hop-by-hop virtualization. However, it’s possible to run into scalability issues when the number of devices grows. This design is typically used when you connect virtual routing and forwarding back to back, i.e., no more than two devices.

When the virtual routers are connected over multiple hops through an IP cloud, you can use generic routing encapsulation ( GRE ) or Multiprotocol Label Switching ( MPLS ) virtual private networks.

GRE is probably the simpler of the Layer 3 methods, and it can work over any IP core. GRE can encapsulate the contents and transport them over a network with the network unaware of the packet contents. Instead, the core will see the GRE header, virtualizing the network path.

Cisco Switch Virtualization: The additional overhead

When designing Cisco switch virtualization, you need to consider the additional overhead. There are a further 24 bytes overhead for the GRE header, so it may be the case that the forwarding router may break the datagram into two fragments, so the packet may not be larger than the outgoing interface MTU. To resolve the fragmentation issue, you can correctly configure MTU, MSS, and Path MTU parameters on the outgoing and intermediate routers.

The GRE standard is typically static. You only need to configure tunnel endpoints, and the tunnel will be up as long as you can reach those endpoints. However, recent designs can establish a dynamic GRE tunnel.

GRE over IPsec

MPLS/VPN, on the other hand, is a different beast. It requires signaling to distribute labels and build an end-to-end Label Switched Path ( LSP ). The label distribution can be done with BGP+label, LDP, and RSVP. Unlike GRE tunnels, MPLS VPNs do not have to manage multiple point-to-point tunnels to provide a full mesh of connectivity. Instead, they are used for connectivity, and packets’ labels provide traffic separation.

Cisco switch virtualization: Many to one

Many-to-one network consolidation refers to grouping two or more physical devices into one. Examples of this Cisco switch virtualization technology include a Virtual Switching System ( VSS ), Stackable switches, and Nexus VPC. Combining many physicals into one logical entity allows STP to view the logical group as one, allowing all ports to be active. By default, STP will block the redundant path.

Software-defined networking takes this concept further; it completely abstracts the entire network into a single virtual switch. The control and data planes are on the same device on traditional routers, yet they are decoupled with SDN. The control plan is now on a policy-driven controller, and the data plane is local on the OpenFlow-enabled switch.

Network Virtualization

Server and network virtualization presented the challenge of multiple VMs sharing a single network physical port, such as a network interface controller ( NIC ). The question then arises: how do I link multiple VMs to the same uplink? How do I provide path separation? Today’s networks need to virtualize the physical port and allow the configuration of policies per port.

Nexus 1000

NIC-per-VM design

One way to do this is to have a NIC-per-VM design where each VM is assigned a single physical NIC, and the NIC is not shared with any other VM. The hypervisor, aka virtualization layer, would be bypassed, and the VM would access the I/O device directly. This is known as VMDirectPath. This direct path or pass-through can improve performance for hosts that utilize high-speed I/O devices, such as 10 Gigabit Ethernet. However, the lack of flexibility and the ability to move VMs offset higher performance benefits.  

Virtual-NIC-per-VM in Cisco UCS (Adapter FEX)

Another way to do this is to create multiple logical NICs on the same physical NIC, such as Virtual-NIC-per-VM in Cisco UCS (Adapter FEX). These logical NICs are assigned directly to VMs, and traffic gets marked with a vNIC-specific tag on the hardware (VN-Tag/802.1ah). The actual VN-Tag tagging is implemented in the server NICs so that you can clone the physical NIC in the server to multiple virtual NICs. This technology provides faster switching and enables you to apply a rich set of management features to local and remote traffic.

Software Virtual Switch

The third option is to implement a virtual software switch in the hypervisor. For example, VMware introduced virtual switching compatibility with its vSphere ( ESXi ) hypervisor, called vSphere Distributed Switch ( VDS ). Initially, they introduced a local L2 software switch, which was soon phased out due to a lack of distributed architecture.

Data physically moves between the servers through the external network, but the control plane abstracts this movement to look like one large distributed switch spanning multiple servers. This approach has a single management and configuration point, similar to stackable switches – one control plane with many physical data forwarding paths. The data does not move through a parent partition but logically connects directly to the network interface through local vNICs associated with each VM.

Network virtualization and Nexus 1000v ( Nexus 1000 )

The VDS introduced by VMware lacked any good networking features, which led Cisco to introduce the Nexus 1000V software-based switch. The Nexus 1000v is a multi-cloud, multi-hypervisor, and multi-services distributed virtual switch. Its function is to enable communication between VMs.

Nexus1000v
Nexus1000v: Virtual Distributed Switch.

Nexus 1000 components: VEM and VSM

The Nexus 1000v has two essential components:

  1. The Virtual Supervisor Module ( VSM )
  2. The Virtual Ethernet Module ( VEM ).

Compared to a physical switch, the VSM could be viewed as the supervisor, setting up the control plane functions for the data plane to forward efficiently, and the VEM as the physical line cards that do all the packet forwarding. The VEM is the software component that runs within the hypervisor kernel. It handles all VM traffic, including inter-VM frames and Ethernet traffic between a VM and external resources.

The VSM runs its NX-OS code and controls the control and management planes, which integrate into a cloud manager, such as a VMware vCenter. You can have two VSMs for redundancy. Both modules remain constantly synchronized with unicast VSM-to-VSM heartbeats to provide stateful failover in the event of an active VSM failure.

The two available communication options for VSM to VEM are:

  1. Layer 2 control mode: The VSM control interface shares the same VLAN with the VEM.
  2. Layer 3 control mode: The VEM and the VSM are in different IP subnets.

The VSM also uses heartbeat messages to detect a loss of connectivity between it and the VEM. However, the VEM does not depend on connectivity to the VSM to perform its data plane functions and will continue forwarding packets if the VSM fails.

 

With Layer 3 control mode, the heartbeat messages are encapsulated in a GRE envelope.

 

Nexus 1000 and VSM best practices

  • L2 control is recommended for new installations.
  • Use MAC pinning instead of LACP.
  • Packet, Control, and Management in the same VLAN.
  • Do not use VLAN 1 for Control and Packet.
  • Use 2 x VSM for redundancy. 

The max latency between VSM and VEM is ten milliseconds. Therefore, a VSM can be placed outside the data center if you have a high-quality DCI link, and the VEM can still be controlled.

Nexus 1000v InterCloud – Cisco switch virtualization

A vital element of the Nexus 1000 is its use case for hybrid cloud deployments and its ability to place workloads in private and public environments via a single pane of glass. In addition, the Nexus 1000v interCloud addresses the main challenges with hybrid cloud deployments, such as security concerns and control/visibility challenges within the public cloud.

The Nexus 1000 interCloud works with Cisco Prime Service Controller to create a secure L2 extension between the private data center and the public cloud.

This L2 extension is based on Datagram Transport Layer Security ( DTLS ) protocol and allows you to securely transfer VMs and Network services over a public IP backbone. DTLS derives the SSL protocol and provides communications privacy for datagram protocols, so all data in motion is cryptographically isolated and encrypted.

Nexus 1000
Nexus 1000 and Hybrid Cloud.

 

Nexus 1000v Hybrid Cloud Components 

Cisco Prime Network Service Controller for InterCloud **A VM that provides a single pane of glass to manage all functions of the inter clouds
InterCloud VSMManage port profiles for VMs in the InterCloud infrastructure
InterCloud ExtenderProvides secure connectivity to the InterCloud Switch in the provider cloud. Install in the private data center.
InterCloud SwitchVirtual Machine in the provider data center has secure connectivity to the InterCloud Extender in the enterprise cloud and secure connectivity to the Virtual Machines in the provider cloud.
Cloud Virtual MachinesVMs in the public cloud running workloads.

Prerequisites

Port 80HTTP access from PNSC for AWS calls and communicating with InterCloud VMs in the provider cloud
Port 443HTTPS access from PNSC for AWS calls and communicating with InterCloud VMs in the provider cloud
Port 22SSH from PNSC to InterCloud VMs in the provider cloud
UDP 6644DTLS data tunnel
TCP 6644DTLS control tunnel

VXLAN – Virtual Extensible LAN

The requirement for applications on demand has led to an increased number of required VLANs for cloud providers. The standard 12-bit identifier, which provided 4000 VLANs, proved to be a limiting factor in multi-tier, multi-tenant environments, and engineers started to run out of isolation options.

This has introduced a 24-bit VXLAN identifier, offering 16 million logical networks. Now, we can cross Layer 3 boundaries. The MAC in UDP encapsulation uses switch hashing to analyze UDP packets and efficiently distribute all packets in a port channel.

nexus 1000
VXLAN operations

VXLAN works like a layer 2 bridge ( Flood and Learn ); the VEM learn does all the heavy lifting, learns all the VM source MAC and Host VXLAN IPs, and encapsulates the traffic according to the port profile to which the VM belongs. Broadcast, Multicast, and unknown unicast traffic are sent as Multicast.

At the same time, unicast traffic is encapsulated and shipped directly to the destination host’s VXLAN IP, aka destination VEM. Enhanced VXLAN offers VXLAN MAC distribution and ARP termination, making it more optional. 

VXLAN Mode Packet Functions

PacketVXLAN(multicast mode)Enhanced VXLAN(unicast mode)Enhanced VXLANMAC DistributionEnhanced VXLANARP Termination
Broadcast /MulticastMulticast EncapsulationReplication plus Unicast EncapReplication plus Unicast EncapReplication plus Unicast Encap
Unknown UnicastMulticast EncapsulationReplication plus Unicast EncapDropDrop
Known UnicastUnicast EncapsulationUnicast EncapUnicast EncapUnicast Encap
ARPMulticast EncapsulationReplication plus Unicast EncapReplication plus Unicast EncapVEM ARP Reply

vPath – Service chaining

Intelligent Policy-based traffic steering through multiple network services.

vPath allows you to intelligently traffic steer VM traffic to virtualized devices. It intercepts and redirects the initial traffic to the service node. Once the service node performs its policy function, the result is cached, and the local virtual switch treats the subsequent packets accordingly. In addition, it enables you to tie services together to push the VM through each service as required. Previously, if you wanted to tie services together in a data center, you needed to stitch the VLANs together, which was limited by design and scale.

Cisco virtualization
Nexus and service chaining

vPath 3.0 is now submitted to the IETF for standardization, allowing service chaining with vPath and non-vpath network services. It enables you to use vpath service chaining between multiple physical devices and supporting multiple hypervisors.

License Options 

Nexus 1000 Essential EditionNexus 1000 Advanced Edition
Full Layer-2 Feature SetAll Features of Essential Edition
Security, QoS PoliciesVSG firewall
VXLAN virtual overlaysVXLAN Gateway
vPath enabled Virtual ServicesTrustSec SGA
Full monitoring and management capabilitiesA platform for other Cisco DC Extensions in the Future
Free$695 per CPU MSRP

Nexus 1000 features and benefits

SwitchingL2 Switching, 802.1Q Tagging, VLAN, Rate Limiting (TX), VXLAN
IGMP Snooping, QoS Marking (COS & DSCP), Class-based WFQ
SecurityPolicy Mobility, Private VLANs w/ local PVLAN Enforcement
Access Control Lists, Port Security, Cisco TrustSec Support
Dynamic ARP inspection, IP Source Guard, DHCP Snooping
Network ServicesVirtual Services Datapath (vPath) support for traffic steering & fast-path off-load[leveraged by Virtual Security Gateway (VSG), vWAAS, ASA1000V]
ProvisioningPort Profiles, Integration with vC, vCD, SCVMM*, BMC CLM
Optimized NIC Teaming with Virtual Port Channel – Host Mode
VisibilityVM Migration Tracking, VC Plugin, NetFlow v.9 w/ NDE, CDP v.2
VM-Level Interface Statistics, vTrackerSPAN & ERSPAN (policy-based)
ManagementVirtual Centre VM Provisioning, vCenter Plugin, Cisco LMS, DCNM
Cisco CLI, Radius, TACACs, Syslog, SNMP (v.1, 2, 3)
Hitless upgrade, SW Installer

Advantages and disadvantages of the Nexus 1000

AdvantagesDisadvantages
The Standard edition is FREE; you can upgrade to an enhanced version when needed.VEM and VSM internal communication is very sensitive to latency. Due to their chatty nature, they may not be good for inter-DC deployments.
Easy and Quick to deployVSM – VEM, VSM (active) – VSM (standby) heartbeat time of 6 seconds makes it sensitive to network failures and congestion.
It offers you many rich network features unavailable on other distributed software switches.VEM over-dependency on VSM reduces resiliency.
Hypervisor agnosticVSM is required for vSphere HA, FT, and VMotion to work.
Hybrid Cloud functionality 

Closing Points on Cisco Nexus 1000v

Key Features and Functionalities:

Virtual Ethernet Module (VEM):

The Nexus 1000v employs the Virtual Ethernet Module (VEM), which runs as a module inside the hypervisor. This allows for efficient and direct communication between VMs, bypassing the traditional reliance on the hypervisor networking stack.

Virtual Supervisor Module (VSM):

The Virtual Supervisor Module (VSM) serves as the control plane for the Nexus 1000v, providing centralized management and configuration. It enables network administrators to define policies, manage virtual ports, and monitor network traffic.

Policy-Based Virtual Network Management:

With the Nexus 1000v, administrators can define policies to manage virtual networks. These policies ensure consistent network configurations across multiple hosts, simplifying network management and reducing the risk of misconfigurations.

Advanced Security and Monitoring Capabilities:

The Nexus 1000v offers granular security controls, including access control lists (ACLs), port security, and dynamic host configuration protocol (DHCP) snooping. Additionally, it provides comprehensive visibility into network traffic, enabling administrators to monitor and troubleshoot network issues effectively.

Benefits of the Nexus 1000v:

Enhanced Network Performance:

By offloading network processing to the VEM, the Nexus 1000v minimizes the impact on the hypervisor, resulting in improved network performance and reduced latency.

Increased Scalability:

The distributed architecture of the Nexus 1000v allows for seamless scalability, ensuring that organizations can meet the growing demands of their virtualized environments.

Simplified Network Management:

With its policy-based approach, the Nexus 1000v simplifies network management tasks, enabling administrators to provision and manage virtual networks more efficiently.

Use Cases:

Data Centers:

The Nexus 1000v is particularly beneficial in data center environments where virtualization is prevalent. It provides a robust and scalable networking solution, ensuring optimal performance and security for virtualized workloads.

Cloud Service Providers:

Cloud service providers can leverage the Nexus 1000v to enhance their network virtualization capabilities, offering customers more flexibility and control over their virtual networks.

The Nexus 1000v is a powerful virtual network switch that provides advanced networking capabilities for virtualized environments. Its rich features, policy-based management approach, and seamless integration with VMware vSphere allow organizations to achieve enhanced network performance, scalability, and management efficiency. As virtualization continues to shape the future of data centers, the Nexus 1000v remains a valuable tool for optimizing virtual network infrastructures.

 

Summary: Cisco Switch Virtualization Nexus 1000v

Welcome to our blog post, where we dive into the world of Cisco Switch Virtualization, explicitly focusing on the Nexus 1000v. In this article, we will unravel the complexities surrounding switch virtualization, explore the key features of the Nexus 1000v, and understand its significance in modern networking environments.

Understanding Switch Virtualization

Switch virtualization is a technique that allows for creating multiple virtual switches on a single physical switch, enabling greater flexibility and efficiency in network management. Organizations can consolidate their infrastructure, reduce costs, and streamline network operations by virtualizing switches.

Introducing the Nexus 1000v

The Cisco Nexus 1000v is a powerful switch virtualization solution that extends the functionality of VMware environments. Unlike traditional virtual switches, it provides a more comprehensive set of features and advanced network control. It seamlessly integrates with VMware vSphere, offering enhanced visibility, security, and policy management.

Key Features of the Nexus 1000v

– Distributed Virtual Switch: The Nexus 1000v operates as a distributed virtual switch, distributing network intelligence across all hosts in the virtualized environment. This ensures consistent policies, simplified troubleshooting, and improved performance.

– Virtual Port Profiles: With virtual port profiles, administrators can define consistent network policies for virtual machines, irrespective of their physical location. This simplifies network provisioning and reduces the chances of misconfigurations.

– Network Analysis Module (NAM): The Nexus 1000v incorporates NAM, a robust monitoring and analysis tool that provides deep visibility into virtual network traffic. This enables administrators to identify and resolve network issues, ensuring optimal performance quickly.

Deployment Considerations

When planning to deploy the Nexus 1000v, it is essential to consider factors such as network architecture, compatibility with existing infrastructure, and scalability requirements. It is advisable to consult with Cisco experts or certified partners to ensure a smooth and successful implementation.

Conclusion:

In conclusion, the Cisco Nexus 1000v is a game-changer in switch virtualization. Its advanced features, seamless integration with VMware environments, and extensive network control make it an ideal choice for organizations seeking to optimize their network infrastructure. By understanding the fundamentals of switch virtualization and exploring Nexus 1000v’s capabilities, network administrators can unlock a world of possibilities in network management and performance.