Layer-3 Data Center

Layer-3 Data Center

Layer 3 Data Center

In today's digital age, data centers play a crucial role in powering our interconnected world. Among various types of data centers, layer 3 data centers stand out for their advanced network capabilities and efficient routing techniques. In this blog post, we will embark on a journey to understand the intricacies and benefits of layer 3 data centers.

Layer 3 data centers are a vital component of modern networking infrastructure. They operate at the network layer of the OSI model, enabling the routing of data packets across different networks. This layer is responsible for logical addressing, packet forwarding, and network segmentation. Layer 3 data centers utilize specialized routers and switches to ensure fast and reliable data transmission.

One of the key advantages of layer 3 data centers is their ability to handle large-scale networks with ease. By utilizing IP routing protocols such as OSPF (Open Shortest Path First) and BGP (Border Gateway Protocol), layer 3 data centers can efficiently distribute network traffic, optimize paths, and adapt to changes in network topology. This scalability ensures that data can flow seamlessly between various devices and networks.

Layer 3 data centers provide enhanced security features compared to lower-layer data centers. With the implementation of access control lists (ACLs) and firewall rules, layer 3 data centers can enforce strict traffic filtering and prevent unauthorized access to sensitive information. Additionally, they offer advanced encryption and virtual private network (VPN) capabilities, ensuring secure communication between different networks and remote locations.

Layer 3 data centers offer flexibility and redundancy in network design. They support the creation of virtual LANs (VLANs), which enable the segmentation of networks for improved performance and security. Furthermore, layer 3 data centers can employ techniques like Equal-Cost Multi-Path (ECMP) routing, which distributes traffic across multiple paths, ensuring optimal resource utilization and fault tolerance.

Conclusion: Layer 3 data centers are the backbone of modern networking infrastructure, enabling efficient and secure data transmission across diverse networks. With their enhanced scalability, network security, flexibility, and redundancy, layer 3 data centers empower organizations to meet the demands of a rapidly evolving digital landscape. By harnessing the power of layer 3 data centers, businesses can pave the way for seamless connectivity and robust network performance.

Highlights: Layer 3 Data Center

Data Center Design

Many cloud-native data center networks range from giant hyperscalers like Amazon, Google, and Microsoft to smaller organizations with anywhere from 20 to 50 switches. However, reliability and cost efficiency are common goals across them all. Compared to purchasing a router, operational cost efficiency is much more complicated. Following the following design principles, cloud-native data center networks achieve reliable, cost-efficient networks in my experience dealing with a wide range of organizations:

  • Simple, standard building blocks

  • Failures in the network should be reconsidered

  • Focus on simplicity with ruthlessness

BGP in the data center

Due to its versatility, BGP is notoriously complex. IPv4 and IPv6, as well as virtualization technologies like MPLS and VXLAN, are all supported by BGP peers. Therefore, BGP is known as a multiprotocol routing protocol. Complex routing policies can be applied because BGP exchanges routing information across administrative domains. As a result of these policies, BGP calculates the best path to reach destinations, announces routes, and specifies their attributes. BGP also supports Unequal-Cost Multipath (UCMP), though not all implementations do.

Port 179
Diagram: Port 179 with BGP peerings.

OSPF in the Data Center

Data centers typically use BGP as their routing protocol. What makes OSPF so appealing? OSPF is appropriate in what scenarios? Is it not appropriate in what scenarios?

For enterprise network administrators, OSPF is the routing protocol of choice. It is a myth that BGP is a complicated protocol (although, in my opinion, BGP is far simpler than OSPF at its core), and its users are usually network administrators handling the backbone or WAN side of an enterprise network. As of this writing, OSPF is the most popular IGP in the Interior Gateway Protocol (IGP) class. OSPF is preferred over BGP mainly because it is more familiar to people.

The role of EVPN

In network virtualization solutions such as EVPN, OSPF is sometimes used instead of BGP to build the underlay network. Many proprietary or open-source routing stacks outside of FRR do not support using a single BGP session with a neighbor to do both overlays and underlays. Service providers traditionally configure underlay networks using IGPs and overlay networks using BGP. OSPF is often used by network administrators who are familiar with this model. Because most VXLAN networks use an IPv4 underlay exclusively, they use OSPFv2 rather than OSPFv3.

Challenging Landscape: Use Case Cumulus

The challenges of designing a proper layer-3 data center surface at the access layer. Dual-connected servers terminating on separate Top-of-Rack (ToR) switches cannot have more than one IP address—a limitation results in VLAN sprawl, unnecessary ToR inter-switch links, and uplink broadcast domain sharing.

Cumulus Networks devised a clever solution entailing the redistribution of Address Resolution Protocol (ARP), avoiding Multi-Chassis Link Aggregation (MLAG) designs, and allowing pure Layer-3 data center networks. Layer 2 was not built with security in mind. Introducing a Layer-3-only data center eliminates any Layer 2 security problems.

The Role of Routing Logic

A Layer 3 Data Center is a type of data center that utilizes Layer 3 switching technology to provide network connectivity and traffic control. Layer 3 Data Centers are typically used in large-scale enterprise networks, providing reliable services and high performance.

Layer 3 Data Centers are differentiated from other data centers using Layer 3 switching. Layer 3 switching, also known as Layer 3 networking, is a switching technology that operates at the third layer of the Open Systems Interconnection (OSI) model, the network layer. This switching type manages network routing, addressing, and traffic control and supports various protocols.

High-Performance Routers and Switches

Layer 3 Data Centers are typically characterized by their use of high-performance routers and switches. These routers and switches are designed to deliver robust performance, scalability, and high levels of security. In addition, by using Layer 3 switching, these data centers can provide reliable network services such as network access control, virtual LANs, and Quality of Service (QoS) management.

You may find the following helpful post for pre-information:

  1. Spine Leaf Architecture
  2. Optimal Layer 3 Forwarding
  3. Virtual Switch 
  4. SDN Data Center
  5. Data Center Topologies
  6. LISP Hybrid Cloud Implementation
  7. IPv6 Attacks
  8. Overlay Virtual Networks
  9. Technology Insight For Microsegmentation



Layer-3 Data Center

Key Layer-3 Data Center Discussion Points:


  • Introduction to Layer-3 data center and what is involved.

  • Highlighting multipath route forwarding.

  • Discussion on Bonding vs. ECMP.

  • Example: Pure Layer 3 solutions.

  • The role of ARP and ARP Processing.

Back to basics: Layer-3 data center and Layer-3 networking

Concepts of traditional three-tier design

The classic data center uses a three-tier architecture, segmenting servers into pods. The architecture consists of core routers, aggregation routers, and access switches to which the endpoints are connected. Spanning Tree Protocol (STP) is used between the aggregation routers and access switches to build a loop-free topology for the Layer 2 part of the network. Spanning Tree Protocol is simple and a plug-and-play technology requiring little configuration.

VLANs are extended within each pod, and servers can move freely within a pod without the need to change IP addresses and default gateway configurations. However, the downside of Spanning Tree Protocol is that it cannot use parallel forwarding paths and permanently blocks redundant paths in a VLAN.

Spanning tree VXLAN
Diagram: Loop prevention. Source is Cisco

A key point: Are we using the “right” layer 2 protocol?

Layer 1 is the easy layer. It defines an encoding scheme needed to pass ones and zeros between devices. Things get more interesting at Layer 2, where adjacent devices exchange frames (layer 2 packets) for reachability. Layer-2 or MAC addresses are commonly used at Layer 2 but are not always needed. Their need arises when more than two devices are attached to the same physical network.

Imagine a device receiving a stream of bits. Does it matter if Ethernet, native IP, or CLNS/CLNP comes in the “second” layer? First, we should ask ourselves whether we use the “right” layer 2 protocol.

Lab guide on VXLAN multicast mode

One crucial aspect of VXLAN is its multicast mode, which efficiently handles broadcast, unknown unicast, and multicast (BUM) traffic. In the following example, I have VXLAN operating in multicast mode, which provides an overlay for the two hosts to communicate. Two key points:

  1. Multicast Group Allocation: Determine the multicast group addresses for VXLAN use. These addresses should be chosen from the administratively scoped multicast address range (239.0.0.0/8).

  2. Underlay Multicast Routing: Configure multicast routing protocols, such as Protocol Independent Multicast (PIM) or Internet Group Management Protocol (IGMP), on the physical network infrastructure to support VXLAN multicast traffic. In the example below, we run PIM sparse mode on all Layer 3 interfaces.

VXLAN multicast mode
Diagram: VXLAN multicast mode

Concept of VXLAN

To overcome the issues of Spanning Tree, we have VXLAN. VXLAN is an encapsulation protocol used to create virtual networks over physical networks. Cisco and VMware developed it, and it was first published in 2011. VXLAN provides a layer 2 overlay on a layer 3 network, allowing traffic separation between different virtualized networks.

This is useful for cloud-based applications and virtualized networks in corporate environments. VXLAN works by encapsulating an Ethernet frame within an IP packet and then tunneling it across the network. This allows more extensive virtual networks to be created over the same physical infrastructure.

Additionally, VXLAN provides a more efficient routing method, eliminating the need to use multiple VLANs. It also separates traffic between multiple virtualized networks, providing greater security and control. VXLAN also supports multicast traffic, allowing faster data broadcasts to various users. VXLAN is an important virtualization and cloud computing tool, providing a secure, efficient, and scalable means of creating virtual networks.

Layer 3 DC Key Features and Functionalities:

1. Network Routing: Layer 3 data centers excel in routing data packets across networks, using advanced routing protocols such as OSPF (Open Shortest Path First) and BGP (Border Gateway Protocol). This enables efficient traffic management and optimal utilization of network resources.

2. IP Addressing: Layer 3 data centers assign and manage IP addresses, allowing devices within a network to communicate with each other and external networks. IP addressing helps identify and locate devices, ensuring reliable data transmission.

3. Interconnectivity: Layer 3 data centers provide seamless connectivity between different networks, whether they are local area networks (LANs), wide area networks (WANs), or the internet. This enables organizations to establish secure and reliable connections with their branches, partners, and customers.

4. Load Balancing: Layer 3 data centers distribute network traffic across multiple servers or network devices, ensuring that no single device becomes overwhelmed. This helps to maintain network performance, improve scalability, and prevent bottlenecks.

Benefits of Layer 3 Data Centers:

1. Enhanced Performance: Layer 3 data centers optimize network performance by efficiently routing traffic, reducing latency, and ensuring faster data transmission. This results in improved application delivery, enhanced user experience, and increased productivity.

2. Scalability: Layer 3 data centers are designed to support network growth and expansion. Their ability to route data across multiple networks enables organizations to scale their operations seamlessly, accommodate increasing traffic, and add new devices without disrupting the network infrastructure.

3. High Security: Layer 3 data centers provide enhanced security measures, including firewall protection, access control policies, and encryption protocols. These measures safeguard sensitive data, protect against cyber threats, and ensure compliance with industry regulations.

4. Flexibility: Layer 3 data centers offer network architecture and design flexibility. They allow organizations to implement different network topologies based on their specific requirements, such as hub-and-spoke, full mesh, or partial mesh.

Lab guide on Cisco ACI

Cisco ACI operates over a leaf and spine with a routed core. It uses VLAN to create an overlay network. Now, we have the benefits of a routed core and VXLAN providing Layer 2 connectivity across the ACI fabric. Therefore, workloads can be placed anywhere in the fabric, and as long as they are in the correct EPG with the correct permissions, they can communicate regardless of physical location.

Below is an example of an ACI fabric from the Cisco ACI simulator. Once you bring up the fabric for the first, you need to provide basic details, as shown below. I’m running this on an ESXi host, so we need to change the port group settings.

ACI fabric Details
Diagram: Cisco ACI fabric Details

Multipath Route Forwarding

Many networks implement VLANs to support random IP address assignment and IP mobility. The switches perform layer-2 forwarding even though they might be capable of layer-3 IP forwarding. For example, they forward packets based on MAC addresses within a subnet, yet a layer-3 switch does not need Layer 2 information to route IPv4 or IPv6 packets.

Cumulus has gone one step further and made it possible to configure every server-to-ToR interface as a Layer 3 interface. Their design permits multipath default route forwarding, removing the need for ToR interconnects and common broadcast domain sharing of uplinks.  

Layer-3 Data Center: Bonding Vs. ECMP

A typical server environment consists of a single server with two uplinks. For device and link redundancy, uplinks are bonded into a port channel and terminated on different ToR switches, forming an MLAG. As this is an MLAG design, the ToR switches need an inter-switch link. Therefore, you cannot bond server NICs to two separate ToR switches without creating an MLAG.

Layer-3 Data Center
Diagram: Layer-3 Data Center.

If you don’t want to use an MLAG, other Linux modes are available on hosts, such as “active | passive” and “active | passive on receive.” A 3rd mode is available but consists of a trick using other ARP replies for the neighbors. This forces both MAC addresses into your neighbors’ ARP cache, allowing both interfaces to receive. The “active | passive” model is popular as it offers predictable packet forwarding and easier troubleshooting.

The “active | passive on receive” mode receives on one link but transmits on both. Usually, you can only receive on one interface, as that is in your neighbors’ ARP cache. To prevent MAC address flapping at the ToR switch, separate MAC addresses are transmitted. A switch receiving the same MAC address over two different interfaces will generate a MAC Address Flapping error.

We have a common problem in each bonding example: we can’t associate one IP address with two MAC addresses. These solutions also require ToR inter-switch linksThe only way to get around this is to implement a pure layer-3 Equal-cost multipath routing (ECMP) solution between the host and ToR. 

Pure layer-3 solution complexities

Firstly, we cannot have one IP address with two MAC addresses. To overcome this, we implement additional Linux features. First, Linux has the capability for an unnumbered interface, permitting the assignment of the same IP address to both interfaces, one IP address for two physical NICs. Next, we assign a /32 Anycast IP address to the host via a loopback address. 

Secondly, the end hosts must send to a next-hop, not a shared subnet. Linux allows you to specify an attribute to the received default route, called “on-link.” This attribute tells end-hosts, “I might not be on a directly connected subnet to the next hop, but trust me, the next hop is on the other side of this link.” It forces hosts to send ARP requests regardless of common subnet assignment.

These techniques enable the assignment of the same IP address to both interfaces and permit forwarding a default route out of both interfaces. Each interface is on its broadcast domain. Subnets can span two ToRs without requiring bonding or an inter-switch link.

Standard ARP processing still works.

Although the Layer 3 ToR switch doesn’t need Layer 2 information to route IP packets, the Linux end-host believes it has to deal with the traditional L2/L3 forwarding environment. As a result, the Layer 3 switch continues to reply to incoming ARP requests. The host will ARP for the ToR Anycast gateway (even though it’s not on the same subnet), and the ToR will respond with its MAC address. The host ARP table will only have one ARP entry because the default route points to a next-hop, not an interface.

Return traffic is slightly different depending on what the ToR advertises to the network. There are two modes: first if the ToR advertises a /24 to the rest of the network, everything works fine until the server-to-ToR link fails. Then, it becomes a layer-2 problem; as you said, you could reach the subnet. This results in return traffic traversing an inter-switch ToR link to get back to the server.

But this goes against our previous design requirement to remove any ToR inter-switch links. Essentially, you need to opt for the second mode and advertise a /32 for each host back into the network.

Take the information learned in ARP, consider it a host routing protocol, and redistribute it into the data center protocol, i.e., redistribute ARP. The ARP table gets you the list of neighbors, and the redistribution pushes those entries into the routed fabric as /32 host routes. This allows you to redistribute only what /32 are active and present in ARP tables. It should be noted that this is not a default mode and is currently an experimental feature.

Layer 3 data centers are the backbone of modern networking, enabling seamless communication, efficient traffic management, and secure data transmission. With their advanced routing capabilities, IP addressing functionalities, and interconnectivity features, Layer 3 data centers empower organizations to build robust and scalable network infrastructures. By leveraging the benefits of Layer 3 data centers, businesses can enhance their performance, improve security, and adapt to the evolving digital landscape.

 

Summary: Layer 3 Data Center

In the ever-evolving world of technology, layer 3 data centers are pivotal in revolutionizing how networks are designed, managed, and scaled. By providing advanced routing capabilities and enhanced network performance, layer 3 data centers offer a robust infrastructure solution for businesses of all sizes. In this blog post, we explored the key features and benefits of layer 3 data centers, their impact on network architecture, and why they are becoming an indispensable component of modern IT infrastructure.

Understanding Layer 3 Data Centers

Layer 3 data centers, also known as network layer or routing layer data centers, are built upon the foundation of layer 3 switches and routers. Unlike layer 2 data centers that primarily focus on local area network (LAN) connectivity, layer 3 data centers introduce the concept of IP routing. This enables them to handle complex networking tasks, such as interconnecting multiple networks, implementing Quality of Service (QoS), and optimizing traffic flow.

Benefits of Layer 3 Data Centers

Enhanced Network Scalability:

Layer 3 data centers offer superior scalability by leveraging dynamic routing protocols such as OSPF (Open Shortest Path First) and BGP (Border Gateway Protocol). These protocols enable efficient distribution of network routes, load balancing, and automatic failover, ensuring seamless network expansion and improved fault tolerance.

Improved Network Performance:

With layer 3 data centers, network traffic is intelligently routed based on IP addresses, allowing faster and more efficient data transmission. By leveraging advanced routing algorithms, layer 3 data centers optimize network paths, reduce latency, and minimize packet loss, enhancing user experience and increased productivity.

Enhanced Security and Segmentation:

Layer 3 data centers provide enhanced security features by implementing access control lists (ACLs) and firewall policies at the network layer. This enables strict traffic filtering, network segmentation, and isolation of different user groups or departments, ensuring data confidentiality and minimizing the risk of unauthorized access.

Impact on Network Architecture

The adoption of layer 3 data centers brings significant changes to network architecture. Traditional layer 2 networks are typically flat and require extensive configuration and maintenance. Layer 3 data centers, on the other hand, introduce hierarchical network designs, allowing for better scalability, easier troubleshooting, and improved network segmentation. By implementing layer 3 data centers, businesses can embrace a more flexible and agile network infrastructure that adapts to their evolving needs.

Conclusion:

Layer 3 data centers have undoubtedly transformed the networking landscape, offering unprecedented scalability, performance, and security. As businesses continue to rely on digital communication and data-driven processes, the need for robust and efficient network infrastructure becomes paramount. Layer 3 data centers provide the foundation for building resilient and future-proof networks, empowering businesses to thrive in the era of digital transformation.