Chaos Engineering

Baseline Engineering

Baseline Engineering

In today's fast-paced digital landscape, network performance plays a vital role in ensuring seamless connectivity and efficient operations. Network baseline engineering is a powerful technique that allows organizations to establish a solid foundation for optimizing network performance, identifying anomalies, and planning for future scalability. In this blog post, we will explore the ins and outs of network baseline engineering and its significant benefits.

Network baseline engineering is the process of establishing a benchmark or reference point for network performance metrics. By monitoring and analyzing network traffic patterns, bandwidth utilization, latency, and other key parameters over a specific period, organizations can create a baseline that represents the normal behavior of their network. This baseline becomes a crucial reference for detecting deviations, troubleshooting issues, and capacity planning.

Proactive Issue Detection: One of the primary advantages of network baseline engineering is the ability to proactively detect and address network issues. By comparing real-time network performance against the established baseline, anomalies and deviations can be quickly identified. This allows network administrators to take immediate action to resolve potential problems before they escalate and impact user experience.

Improved Performance Optimization: With a solid network baseline in place, organizations can gain valuable insights into network performance patterns. This information can be leveraged to fine-tune configurations, optimize resource allocation, and enhance overall network efficiency. By understanding the normal behavior of the network, administrators can make informed decisions to improve performance and provide a seamless user experience.

Data Collection: The first step in network baseline engineering is collecting relevant data, including network traffic statistics, bandwidth usage, application performance, and other performance metrics. This data can be obtained from network monitoring tools, SNMP agents, flow analyzers, and other network monitoring solutions.

Data Analysis and Baseline Creation: Once the data is collected, it needs to be analyzed to identify patterns, trends, and normal behavior. Statistical analysis techniques, such as mean, median, and standard deviation, can be applied to determine the baseline values for various performance parameters. This process may involve using specialized software or network monitoring platforms.

Maintaining and Updating the Network Baseline: Networks are dynamic environments, and their behavior can change over time due to various factors such as increased user demands, infrastructure upgrades, or new applications. It is essential to regularly review and update the network baseline to reflect these changes accurately. By periodically reevaluating the baseline, organizations can ensure its relevance and effectiveness in capturing the network's current behavior.

Conclusion: Network baseline engineering is a fundamental practice that empowers organizations to better understand, optimize, and maintain their network infrastructure. By establishing a reliable baseline, organizations can proactively detect issues, enhance performance, and make informed decisions for future network expansion. Embracing network baseline engineering sets the stage for a robust and resilient network that supports the ever-growing demands of the digital age.

Highlights: Baseline Engineering

Traditional Network Infrastructure

Baseline Engineering was easy in the past; applications ran in single private data centers, potentially two data centers for high availability. There may have been some satellite PoPs, but generally, everything was housed in a few locations. These data centers were on-premises, and all components were housed internally. As a result, troubleshooting, monitoring, and baselining any issues was relatively easy. The network and infrastructure were pretty static, the network and security perimeters were known, and there weren’t many changes to the stack, for example, daily.

Distributed Applications

However, nowadays, we are in a completely different environment. We have distributed applications with components/services located in many other places and types of places, on-premises and in the cloud, with dependencies on both local and remote services. We span multiple sites and accommodate multiple workload types.

In comparison to the monolith, today’s applications have many different types of entry points to the external world. All of this calls for the practice of Baseline Engineering and Chaos engineering kubernetes so you can fully understand your infrastructure and scaling issues. 

The Role of Network Baselining

Network baselining involves capturing and analyzing network traffic data to establish a benchmark or baseline for normal network behavior. This baseline represents the typical performance metrics of the network under regular conditions. It encompasses various parameters such as bandwidth utilization, latency, packet loss, and throughput. By monitoring these metrics over time, administrators can identify patterns, trends, and anomalies, enabling them to make informed decisions about network optimization and troubleshooting.

Before you proceed, you may find the following post helpful:

  1. Network Traffic Engineering
  2. Low Latency Network Design
  3. Transport SDN
  4. Load Balancing
  5. What is OpenFlow
  6. Observability vs Monitoring
  7. Kubernetes Security Best Practice

 



Baseline Engineering


Key Baseline Engineering Discussion Points:


  • Monitoring was easy in the past.

  • How to start a baseline engineering project.

  • Distributed components and latency.

  • Chaos Engineeering Kubernetes.

Back to basics with baseline engineering

Chaos Engineering

Chaos engineering is a methodology of experimenting on a software system to build confidence in the system’s capability to withstand turbulent environments in production. It is an essential part of the DevOps philosophy, allowing teams to experiment with their system’s behavior in a safe and controlled manner.

This type of baseline engineering allows teams to identify weaknesses in their software architecture, such as potential bottlenecks or single points of failure, and take proactive measures to address them. By injecting faults into the system and measuring the effects, teams gain insights into system behavior that can be used to improve system resilience.

Finally, chaos Engineering teaches you to develop and execute controlled experiments that uncover hidden problems. For instance, you may need to inject system-shaking failures that disrupt system calls, networking, APIs, and Kubernetes-based microservices infrastructures.

Chaos engineering is defined as “the discipline of experimenting on a system to build confidence in the system’s capability to withstand turbulent conditions in production.” In other words, it’s a software testing method that concentrates on finding evidence of problems before users experience them.

Chaos Engineering

 

Network Baselining

Network baselinelining involves measuring the network’s performance at different times. This includes measuring throughput, latency, and other performance metrics and the network’s configuration. It is important to note that performance metrics can vary greatly depending on the type of network being used. This is why it is essential to establish a baseline for the network to be used as a reference point for comparison.

Network baselining is integral to network management as it allows organizations to identify and address potential issues before they become more serious. Organizations can be alerted to potential problems by baselining the network’s performance. This can help organizations avoid costly downtime and ensure their networks run at peak performance.

network baselining
Diagram: Network Baselining. Source is DNSstuff

 

 

The Importance of Network Baselining:

Network baselining provides several benefits for network administrators and organizations:

1. Performance Optimization: Baselining helps identify bottlenecks, inefficiencies, and abnormal behavior within the network infrastructure. Administrators can optimize network resources, improve performance, and ensure a smoother user experience by understanding the baseline.

2. Security Enhancement: Baselining also plays a crucial role in detecting and mitigating security threats. Administrators can identify unusual or malicious activities by comparing current network behavior against the established baseline, such as abnormal traffic patterns or unauthorized access attempts.

3. Capacity Planning: Understanding network baselines enables administrators to forecast future capacity requirements accurately. By analyzing historical data, they can determine when and where network upgrades or expansions may be necessary, ensuring consistent performance as the network grows.

Establishing a Network Baseline:

To establish an accurate network baseline, administrators follow a systematic approach:

1. Data Collection: Network traffic data is collected using specialized monitoring tools like network analyzers or packet sniffers. These tools capture and analyze network packets, providing detailed insights into performance metrics.

2. Duration: Baseline data should ideally be collected over an extended period, typically from a few days to a few weeks. This ensures the baseline accounts for variations due to different network usage patterns.

3. Normalizing Factors: Administrators consider various factors impacting network performance, such as peak usage hours, seasonal variations, and specific application requirements. Normalizing the data can establish a more accurate baseline that reflects typical network behavior.

4. Analysis and Documentation: Once the baseline data is collected, administrators analyze the metrics to identify patterns and trends. This analysis helps establish thresholds for acceptable performance and highlights any deviations that may require attention. Documentation of the baseline and related analysis is crucial for future reference and comparison.

Network Baselining: A Lot Can Go Wrong

Infrastructure is becoming increasingly complex, and let’s face it, a lot can go wrong. It’s imperative to have a global view of all the infrastructure components and a good understanding of the application’s performance and health. In a large-scale container-based application design, there are many moving pieces and parts, and it is hard to validate the health of each piece manually.  

Therefore, monitoring and troubleshooting are much more complex, especially as everything is interconnected, making it difficult for a single person in one team to understand what is happening entirely. Nothing is static anymore; things are moving around all the time. This is why it is even more important to focus on the patterns and to be able to see the path of the issue efficiently.

Some modern applications could be in multiple clouds and different location types simultaneously. As a result, there are numerous data points to consider. If any of these segments are slightly overloaded, the sum of each overloaded segment results in poor performance on the application level. 

What does this mean to latency?

Distributed computing has many components and services, with far apart components. This contrasts with a monolith with all parts in one location. As a result of the distributed nature of modern applications, latency can add up. So, we have both network latency and application latency. The network latency is several orders of magnitude more significant.

As a result, you need to minimize the number of Round Trip Times and reduce any unneeded communication to an absolute minimum. When communication is required across the network, it’s better to gather as much data together to get bigger packets that are more efficient to transfer. Also, consider using different types of buffers, both small and large, which will have varying effects on the dropped packet test.

Dropped Packet Test
Diagram: Dropped Packet Test and Packet Loss.

With the monolith, the application is simply running in a single process, and it is relatively easy to debug. Many traditional tooling and code instrumentation technologies have been built, assuming you have the idea of a single process. The core challenge is trying to debug microservices applications. So much of the tooling we have today has been built for traditional monolithic applications. So, there are new monitoring tools for these new applications, but there is a steep learning curve and a high barrier to entry.

A new approach: Network baselining and Baseline engineering

For this, you need to understand practices like Chaos Engineering, along with service level objectives (SLOs), and how they can improve the reliability of the overall system. Chaos Engineering is a baseline engineering practice that allows tests to be performed in a controlled way. Essentially, we intentionally break things to learn how to build more resilient systems.

So, we are injecting faults in a controlled way to make the overall application more resilient by injecting various issues and faults. Implementing practices like Chaos Engineering will help you understand and manage unexpected failures and performance degradation. The purpose of Chaos Engineering is to build more robust and resilient systems.

A final note on baselines: Don’t forget them!!

Creating a good baseline is a critical factor. You need to understand how things work under normal circumstances. A baseline is a fixed point of reference used for comparison purposes. You usually need to know how long it takes to start the application to the actual login and how long it takes to do the essential services before there are any issues or heavy load. Baselines are critical to monitoring.

It’s like security; if you can’t see what, you can’t protect. The same assumptions apply here. Go for a good baseline and if you can have this fully automated. Tests need to be carried out against the baseline on an ongoing basis. You need to test constantly to see how long it takes users to use your services. Without baseline data, estimating any changes or demonstrating progress is difficult.

Network baselining is a critical practice for maintaining optimal network performance and security. Administrators can proactively monitor, analyze, and optimize their networks by establishing a baseline. This approach enables them to promptly identify and address performance issues, enhance security measures, and plan for future capacity requirements. Organizations can ensure a reliable and efficient network infrastructure that supports their business objectives by investing time and effort in network baselining.

 

Summary: Baseline Engineering

Maintaining stability and performance is crucial in the fast-paced world of technology, where networks are the backbone of modern communication. This blog post will delve into the art of Network Baseline Engineering, uncovering its significance, methods, and benefits—strap in as we embark on a journey to understand and master this essential aspect of network management.

Section 1: What is Network Baseline Engineering?

Network Baseline Engineering is a process that involves establishing a benchmark or baseline for network performance, allowing for effective monitoring, troubleshooting, and optimization. Administrators can identify patterns, trends, and anomalies by capturing and analyzing network data over a certain period.

Section 2: The Importance of Network Baseline Engineering

A stable network is vital for seamless operations, preventing downtime, and ensuring user satisfaction. Network Baseline Engineering helps understand normal network behavior, crucial for detecting deviations, security threats, and performance issues. It enables proactive measures, reducing the impact of potential disruptions.

Section 3: Establishing a Baseline

Administrators need to consider various factors to create an accurate network baseline. These include defining key performance indicators (KPIs), selecting appropriate tools for data collection, and determining the time frame for capturing network data. Proper planning and execution are essential to ensure data accuracy and reliability.

Section 4: Analyzing and Interpreting Network Data

Once network data is collected, the real work begins. Skilled analysts leverage specialized tools to analyze the data, identify patterns, and establish baseline performance metrics. This step requires expertise in statistical analysis and a deep understanding of network protocols and traffic patterns.

Section 5: Benefits of Network Baseline Engineering

Network Baseline Engineering offers numerous benefits. It enables administrators to promptly detect and resolve performance issues, optimize network resources, and enhance overall network security. Organizations can make informed decisions, plan capacity upgrades, and ensure a smooth user experience by having a clear picture of normal network behavior.

Conclusion:

Network Baseline Engineering is the foundation for maintaining network stability and performance. By establishing a benchmark and continuously monitoring network behavior, organizations can proactively address issues, optimize resources, and enhance overall network security. Embrace the power of Network Baseline Engineering and unlock the full potential of your network infrastructure.