What does SDN mean

BGP has a new friend – BGP-Based SDN

BGP-Based SDN

The world of networking continues to evolve rapidly, with new technologies and approaches emerging to meet the growing demands of modern communication. Two such technologies, BGP (Border Gateway Protocol) and SDN (Software-Defined Networking), have gained significant attention for their impact on network flexibility and management. In this blog post, we will delve into the fascinating intersection of BGP and SDN, exploring how they work together to empower network administrators and optimize network operations.

Border Gateway Protocol (BGP) serves as the backbone of the internet, facilitating the exchange of routing information between networks. BGP enables dynamic routing, allowing routers to determine the best paths for data transmission based on various factors such as network policies, path preferences, and traffic conditions. It plays a crucial role in inter-domain routing, where multiple networks connect and exchange data.

Software-Defined Networking (SDN) introduces a paradigm shift in network management by decoupling the control plane from the data plane. In traditional networks, network devices such as switches and routers possess both control and data plane functionalities. SDN separates these functions, with a centralized controller managing the network's behavior and forwarding decisions. The data plane, consisting of switches and routers, simply follows the instructions provided by the controller.

When BGP and SDN converge, we unlock a new realm of network possibilities. SDN's centralized control and programmability complement BGP's routing capabilities, offering enhanced flexibility and control over network operations. By leveraging SDN controllers, network administrators can dynamically adjust BGP routing policies, optimize traffic flows, and respond to changing network conditions in real-time. This dynamic interaction between BGP and SDN empowers organizations to adapt their networks to ever-evolving requirements efficiently.

The combination of BGP and SDN brings forth several advantages and opens up exciting use cases. Network operators can implement traffic engineering techniques to optimize network paths, improve performance, and minimize congestion. They can also utilize SDN's programmability to automate BGP configuration and provisioning, reducing human errors and accelerating network deployment. Additionally, BGP-SDN integration facilitates the implementation of policies for traffic prioritization, security, and load balancing.

In conclusion, the convergence of BGP and SDN represents a powerful synergy that empowers network administrators to achieve unprecedented levels of flexibility, control, and efficiency. By combining BGP's robust routing capabilities with SDN's programmability and centralized management, organizations can adapt their networks swiftly to meet evolving demands. As the networking landscape continues to evolve, the BGP-SDN combination will undoubtedly play a pivotal role in shaping the future of network architecture.

Highlights: BGP-Based SDN

SDN and BGP

BGP SDN, or Border Gateway Protocol Software-Defined Networking, combines two powerful technologies: the Border Gateway Protocol (BGP) and Software-Defined Networking (SDN). BGP, a routing protocol, facilitates inter-domain routing, while SDN provides centralized control and programmability of the network. Together, they offer a dynamic and adaptable networking environment.

While Border Gateway Protocol (BGP) was initially designed to connect networks operated by different companies, such as transit service providers, providers of large-scale data centers discovered that it could be used for spine and leaf fabrics.

BGP can also be used as an SDN because it already runs on all routers. According to the diagram below, each router in the fabric is connected to an iBGP controller.

Augmented model

After the iBGP sessions are established, the controller can read the entire topology to determine which path the flow should be pinned to and which flows should avoid the path over which the flow is passing.

An augmented model uses a centralized control plane that interacts directly with a distributed control plane (eBGP). Interestingly, the same protocol used to push policy (the southbound interface) is also used to discover and distribute topology and reachability information in this hybrid model implementation.

SDN and OpenFlow

The Role of SDN

Before we start our journey on BGP SDN, let us first address what SDN means. The Software-Defined Networking (SDN) framework has a large and varied context. Multiple components may or may not be used, including the OpenFlow Protocol. Some evolving SDN use cases leverage the capabilities of the OpenFlow protocol, while others do not require it.

OpenFlow is only one of those protocols within the SDN architecture. This post addresses using the Border Gateway Protocol (BGP) as the transfer protocol between the SDN controller and forwarding devices, enabling BGP-based SDN, also known as BGP SDN.

BGP and OpenFlow

BGP and OpenFlow are monolithic, meaning they are not used simultaneously. Integrating BGP to SDN offers several use cases, such as DDoS mitigationexception routing, forwarding optimizationsgraceful shutdown, and integration with legacy networks. Some of these use cases are available using OpenFlow Traffic Engineering; others, like graceful shutdown and integration with the legacy network, are easier to accomplish with BGP SDN. 

What is OpenFlow



What Does SDN Mean?

Key BGP SDN Discussion Points:


  • Introduction to BGP SDN and what is involved.

  • Highlighting the the different components involved in a SDN BGP network.

  • Discussing creating an SDN architecture.

  • Technical details on the use of BGP and IGP.

  • The role of BGP-LS.

Before you proceed, you may find the following post helpful:

  1. BGP Explained
  2. Transport SDN
  3. What is OpenFlow
  4. Software Defined Perimeter Solutions
  5. WAN SDN
  6. OpenFlow And SDN Adoption
  7. HP SDN Controller

Back to basics with BGP SDN

What is BGP?

What is BGP protocol in networking? Border Gateway Protocol (BGP) is the routing protocol under the Exterior Gateway Protocol (EGP) category. In addition, we have separate protocols, which are Interior Gateway Protocols (IGPs). However, IGP can come with some disadvantages.

Firstly, policies are challenging to implement with an IGP because of the need for more flexibility. Usually, a tag is the only tool available that can be problematic to manage and execute on a large-scale basis. In the age of increasingly complex networks in both architecture and services, BGP presents a comprehensive suite of knobs to deal with complex policies, such as the following:

• Communities

• AS_PATH filters

• Local preference

• Multiple exit discriminator (MED

Critical Components of BGP SDN:

a. BGP Routing: BGP SDN leverages the BGP protocol to manage the routing decisions between different networks. This enables efficient and optimized routing and seamless communication across various domains.

b. SDN Controller: The SDN controller acts as the centralized brain of the network, providing a single point of control and management. It enables network administrators to define and enforce network policies, configure routing paths, and allocate network resources dynamically.

c. OpenFlow Protocol: BGP SDN uses the OpenFlow protocol to communicate between the SDN controller and the network switches. OpenFlow enables the controller to programmatically control the forwarding behavior of switches, resulting in greater flexibility and agility.

Benefits of BGP SDN:

a. Enhanced Flexibility: BGP SDN allows network administrators to tailor their network infrastructure to meet specific requirements. With centralized control, network policies can be easily modified or updated, enabling rapid adaptation to changing business needs.

b. Improved Scalability: Traditional network architectures often struggle to handle the growing demands of modern applications. BGP SDN provides a scalable solution by enabling dynamic allocation of network resources, optimizing traffic flow, and ensuring efficient bandwidth utilization.

c. Simplified Network Management: The centralized management offered by BGP SDN simplifies network operations. Network administrators can configure, monitor, and manage the entire network from a single interface, reducing complexity and improving overall efficiency.

Use Cases for BGP SDN:

a. Data Centers: BGP SDN is well-suited for data center environments, where rapid provisioning, scalability, and efficient workload distribution are critical. By leveraging BGP SDN, data centers can seamlessly integrate physical and virtual networks, enabling efficient resource allocation and workload migration.

b. Service Providers: BGP SDN allows service providers to offer flexible and customizable network services to their customers. It enables the creation of virtual private networks, traffic engineering, and service chaining, resulting in improved service delivery and customer satisfaction.

Highlighting BGP-based SDN 

BGP-based SDN involves two main solution components that may be integrated into several existing BGP technologies. First, we have an SDN controller component speaking BGP and deciding what needs to be done. Second, we have a BGP originator component sending BGP updates to the SDN controller and other BGP peers. For example, the controller could be a BGP software package running on Open Daylight. BGP originators are Linux daemons or traditional proprietary vendor devices running the BGP stack.

What does SDN mean
Diagram: What does SDN mean with BGP SDN?

Creating an SDN architecture

To create the SDN architecture, these components are integrated with existing BGP technologies, such as BGP FlowSpec (RFC 5575), L3VPN (RFC4364), EVPN (RFC 7432), and BGP-LS. BGP FlowSpec distributes forwarding entries, such as ACL and PBR, to devices’ TCAMs. L3VPN and EVPN offer the mechanism to integrate with legacy networks and service insertion. BGP-LS extracts IGP network topology information and passes it to the SDN controller via BGP updates.

Central policy, visibility, and control

Introducing BGP into the SDN framework does not mean a centralized control plane. We still have a central policy, visibility, and control, but this is not a centralized control plane. A centralized control plane would involve local control plane protocols establishing adjacencies or other ties to the controller. In this case, the forwarding devices outright require the controller to forward packets; forwarding functionality is limited when the controller is down.

If the BGP SDN controller acts as a BGP route reflector, all announcements go to the controller, but the network runs fine without it. The controller is just adding value to the usual forwarding process. BGP-based SDN architecture augments the network; it does not replace it. Decentralizing the control plane is the only way; look at Big Switch and NEC’s SDN design changes over the last few years. Centralized control planes cannot scale.

Why use BGP?

BGP is well-understood and field-tested. It has been extended on many occasions to carry additional types of information, such as MAC addresses and labels. Technically, BGP can be used as a replacement for Label Distribution Protocol (LDP) in an MPLS core. Labels can be assigned to IPv6 prefixes (6PE) and labeled switched across an IPv4-only MPLS core.

BGP is very extensible. It started with IPv4 forwarding, and address families were added for multicast and VPN traffic. Using multiple addresses inside a single BGP process was widely accepted and implemented as a core technology. The entire Internet is made up of BGP, and it carries over 500,000 prefixes. It’s very scalable and robust. Some MPLS service providers are carrying over 1 million customer routes.

The use of open-source BGP daemons

There are many high-quality open-source BGP daemons available. Quagga is one of the most popular, and its quality has improved since it adopted Cumulus and Google. Quagga is a routing suite and has IGP support for IS-IS and OSPF. Also, a BIRD daemon is available. The implementation is based around Internet exchange points as the route server element. BIRD is currently carrying over 100,000 prefixes.

Using BGP-based SDN on an SDN controller integrates easily with your existing network. You don’t have to replace any existing equipment, deploy the controller, and implement the add-on functionality that BGP SDN offers. It enables a preferred step-by-step migration approach, not a risky big bang OpenFlow deployment.

IGP to the controller?

Why not run OSPF or ISIS to the controller? IS-IS is extendable with TLVs and, too, can carry a variety of information. The real problem is not extensibility but the lack of trust and policy control. IGP extension to the SDN controller with few controls could present a problem. OSPF sends LSA packets; there is no input filter. BGP is designed with policy control in mind and acts as a filter by implementing controls on individual BGP sessions.

BGP offers control on the network side and predicts what the controller can do. For example, the blast radius is restricted if the controller encounters a bug or is compromised. BGP also provides greater policy mechanisms between the SDN controller and physical infrastructure. 

Introducing BGP-LS

SDN requires complete topology visibility. If some topology information is hidden in IGP and other NLRIs in BGP, the picture is incomplete. If you have an existing IGP, how do you propagate this information to the BGP controller? Border Gateway Protocol Link-State (BGP-LS) is cleaner than establishing an IGP peering relationship with the SDN controller. 

BGP-LS extracts network topology information and updates it to the BGP controller. Once again, BGPv4 is extended to provide the capability to include the new Network Layer Reachability Information (NLRI) encoding format. It sends information from IS-IS or OSPF topology database through BGP updates to the SDN controller. BGP-LS can configure the session to be unidirectional and stop incoming updates to enhance security between the physical and SDN worlds.

A key point: SDN controller cannot leak information back

As a result, the SDN controller cannot leak information back into the running network. BGP-LS is a relatively new concept. It focuses on the mechanism to export IGP information and does not describe how the SDN controller can use it. Once the controller has the complete topology information, it may be integrated with traffic engineers and external path computing solutions to interact with information usually only carried by an IGP database.

For example, the Traffic Engineering Database (TED), built by ISIS and OSPF-TE extensions, is typically distributed by IGPs within the network. Previously, each node maintained its own TED, but now, this can be exported to a BGP RR SDN application for better visibility.

BGP scale-out architectures

SDN controller will always become the scalability bottleneck. It can scale better when it’s not participating in data plane activity, but eventually, it will reach its limits. Every controller implementation eventually hits this point. The only way to grow is to scale out. 

Reachability and policy information is synchronized between individual controllers. For example, reachability information can be transferred and synchronized with MP-BGP, L3VPN for IP routing, or EVPN for layer-2 forwarding.

BGP SDN

Utilizing BGP between controllers offers additional benefits. Each controller can be placed in a separate availability zone, and tight BGP policy controls are implemented on BGP sessions connecting those domains, offering a clean failure domain separation.

An error in one available zone is not propagated to the next available zone. BGP is a very scalable protocol, and the failure domains can be as large as you want, but the more significant the domain, the longer the convergence times. Adjust the size of failure domains to meet scalability and convergence requirements. 

BGP SDN combines the power of BGP routing and SDN to create a networking paradigm that enhances flexibility, scalability, and manageability. By leveraging BGP SDN, organizations can build dynamic networks that adapt to their changing needs and optimize resource utilization. As the demand for faster, more reliable, and flexible networks continues to grow, BGP SDN is poised to play a critical role in shaping the future of network infrastructure.

Summary: BGP-Based SDN

In today’s rapidly evolving technological landscape, software-defined networking (SDN) has emerged as a groundbreaking approach to network management. One of the key components within the realm of SDN is the Border Gateway Protocol (BGP). In this blog post, we delved into the world of BGP SDN, exploring its significance, functionality, and how it transforms traditional networking architectures.

Understanding BGP

BGP, or Border Gateway Protocol, is a routing protocol that facilitates the exchange of routing information between different autonomous systems (AS). It plays a crucial role in determining the optimal path for data packets to traverse across the internet. Unlike other routing protocols, BGP operates on a policy-based routing model, allowing network administrators to have granular control over traffic flow and network policies.

The Evolution of SDN

To comprehend the importance of BGP SDN, it is essential to understand the evolution of software-defined networking. SDN revolutionizes traditional network architectures by decoupling the control plane from the underlying physical infrastructure. This separation enables centralized network control, programmability, and dynamic configuration, enhancing flexibility and scalability.

BGP in the SDN Paradigm

Within the SDN framework, BGP plays a pivotal role in interconnecting different SDN domains, providing a scalable and flexible solution for routing between virtual networks. By incorporating BGP into the SDN architecture, organizations can achieve dynamic network provisioning, traffic engineering, and efficient handling of network policy changes.

Benefits of BGP SDN

The integration of BGP within the SDN paradigm brings forth numerous benefits. Firstly, it enables seamless interoperability between SDN and traditional networking environments, ensuring a smooth transition towards software-defined infrastructures. Additionally, BGP SDN empowers network administrators with enhanced control and visibility, simplifying the management of complex network topologies and policies.

Conclusion:

In conclusion, BGP SDN represents a significant milestone in the networking industry. Its ability to merge the power of BGP with the flexibility of software-defined networking opens new horizons for network management. By embracing BGP SDN, organizations can achieve greater agility, scalability, and control over their networks, ultimately leading to more efficient and adaptable infrastructures.