
Dinesh G. Dutt

EVPN in the
Data Center

FREE CHAPTER

This excerpt contains Chapter 2 of the book
EVPN in the Data Center. The complete book is

available on oreilly.com and through other
retailers.

Dinesh G. Dutt

EVPN in the Data Center

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

https://oreilly.com

978-1-492-02903-8

[LSI]

EVPN in the Data Center
by Dinesh G. Dutt

Copyright © 2018 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com/safari). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Courtney Allen
Development Editor: Andy Oram
Production Editor: Justin Billing
Copyeditor: Octal Publishing, Inc.

Proofreaders: Andrew Clark
Dwight Ramsey
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

June 2018: First Edition

Revision History for the First Edition
2018-06-04: First Release
2018-07-13: Second Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. EVPN in the Data
Center, the cover image, and related trade dress are trademarks of O’Reilly Media,
Inc.

The views expressed in this work are those of the authors, and do not represent the
publisher’s views. While the publisher and the authors have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of or
reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and Cumulus Networks. See
our statement of editorial independence.

http://oreilly.com/safari
mailto:corporate@oreilly.com
http://www.oreilly.com/about/editorial_independence.html

Table of Contents

Network Virtualization. 1
What Is Network Virtualization? 1
Network Tunneling 5
VXLAN 9
Protocols to Implement the Control Plane 11
Support for Network Virtualization Technologies 12
Summary 14

iii

Network Virtualization

Ethernet VPN (EVPN) is a technology for connecting Layer 2 (L2)
network segments separated by a Layer 3 (L3) network. It accom‐
plishes this by constructing a virtual L2 network over the underlying
L3 network. This setting up of virtual network overlays is a specific
kind of network virtualization.

So, we begin our journey to the world of EVPN by studying network
virtualization. This chapter covers types of network virtualization,
including in more detail the specific type of virtualization called
Network Virtualization Overlays (NVOs). Staying true to a practi‐
tioner’s handbook, this chapter largely focuses on understanding the
ramifications of NVOs for a network administrator. We study net‐
work tunnels and their effects on administering networks. A little
history provides context for the broader technology called network
virtualization and adds color to the specifics of Virtual Extensible
LAN (VXLAN), the primary NVO protocol used with EVPN within
the data center. We conclude with a brief survey of alternate control-
plane choices and the availability of network virtualization solu‐
tions. By the end of this chapter, you will be able to tease apart the
meaning of the phrase “virtual L2 network overlay.”

What Is Network Virtualization?
This section begins by examining the raison d’être for virtual net‐
works. We then examine the different kinds of virtual networks,
before concluding with the benefits and the challenges of overlay
virtual networks.

1

Network virtualization is the carving up of a single physical network
into many virtual networks. Virtualizing a resource allows it to be
shared by multiple users. Sharing allows the efficient use of a
resource when no single user can utilize the entire resource. Virtual‐
ization affords each user the illusion that they own the resource. In
the case of virtual networks, each user is under the illusion that
there are no other users of the network. To preserve the illusion, vir‐
tual networks are isolated from one another. Packets cannot acci‐
dentally leak from one virtual network to another.

Types of Virtual Networks
Many different types of virtual networks have sprung up over the
decades to meet different needs. A primary distinction between
these different types is their model for providing network connectiv‐
ity. Networks can provide connectivity via bridging (L2) or routing
(L3). Thus, virtual networks can be either virtual L2 networks or vir‐
tual L3 networks.

The granddaddy of all virtual networks is the Virtual Local Area
Network (VLAN). VLAN was invented to reduce the excessive chat‐
ter in an L2 network by isolating applications from their noisy
neighbors. Virtual Routing and Forwarding (VRF), the original vir‐
tual L3 network, was invented along with L3 Virtual Private Net‐
work (L3VPN) to solve the problem of interconnecting
geographically disparate networks of an enterprise over a public net‐
work. When interconnecting multiple enterprises, the public net‐
work had to keep each enterprise network isolated from the other.
This isolation also helped enterprises reuse the same IP address
within their own enterprise. So how do virtual networks help with
overlapping address spaces?

Network addresses must be unique only in a contiguously connected
network. Consider old-fashioned postal addressing. A common
model for a postal address is to use a numbered street address, the
city, the state, and maybe the country. Within a city there can be
only a single location that is addressed as 463 University Avenue.
Similarly, within a state, you cannot have more than one city called
Columbus, and within a country you cannot have multiple states
called California. The uniqueness of an address is specific to the
container it is in.

2 | Network Virtualization

1 Anycast addresses, which can be used to represent a logical entity, can be shared by
multiple physical entities. This is akin to the way bulk mail is addressed with “Resident
of Sunnyvale.”

2 In VLAN, the VNI is called VLAN ID, and in VPN it is called VPN ID. In VXLAN, it is
called VNI.

Similarly, a MAC address, which is an L2 address, needs to be
unique only in a contiguously connected L2 network.1 An IP address
needs to be unique only within a contiguous L3 network. Because
virtual networks provide the illusion of a single contiguous network,
an address needs to be unique only within a virtual network. In
other words, the same address can be present in multiple virtual net‐
works. A MAC address is unique within a virtual L2 network. Simi‐
larly, an IP address is unique within a virtual L3 network. Packet
forwarding uses a forwarding table that stores reachability to known
destination addresses. Because a virtual network is carved out of a
single physical resource, to allow address reuse, every virtual net‐
work gets its own logical copy of the forwarding table.

Virtual L2 and L3 networks behave just like their nonvirtual coun‐
terparts. The uniqueness of the MAC or IP address within a contig‐
uous network is one example. Another example is that a device in
one virtual L2 network can communicate with a device in a different
virtual network via routing.

VLAN, VRF, and L3VPN highlight two other characteristics that
distinguish different types of virtual networks. The first is the way in
which a packet switching node decides to associate a packet with a
virtual network. The second is whether transit nodes in a network
path are aware of virtual networks.

The most common way to associate a packet with its virtual network
is to carry a Virtual Network Identifier (VNI) in the packet header.
VLAN, L3VPN, and VXLAN are examples of solutions carrying the
VNI in the packet.2 A less common way is to derive the virtual net‐
work at every hop based on the incoming interface and the packet
header. Only the plain VRF model (without the L3VPN) uses this
latter method.

In VLAN and VRF, every transit node needs to be aware of and pro‐
cess the virtual network to which the packet belongs. However, in
L3VPN, the public network over which each enterprise’s private net‐
work is transported is unaware that it is transporting multiple pri‐

What Is Network Virtualization? | 3

vate networks. A virtual network implemented with protocols that
leave the transit nodes unaware of it is called a virtual network over‐
lay. This is because the virtual network looks like it is overlaid on
top of the physical network. The physical network itself is called the
underlay network. VLAN and VRF are called inline virtual networks,
or non-overlay virtual networks. In the models of virtual networks,
overlay virtual networks are widely considered to be more scalable
and easier to administer. For the remainder of the book, we focus on
this architecture.

Benefits of overlay virtual networks
The primary benefit of virtual network overlays over non-overlays is
that they scale much better. Because the network core does not have
to store forwarding table state for the virtual networks, it operates
with much less state. In any network, the core sees the aggregate of
all the traffic from the edges. So this scalability is critical. As a con‐
sequence, a single physical network can support a larger number of
virtual networks.

The second benefit of overlay networks is they allow for rapid provi‐
sioning of virtual networks. Rapid provisioning is possible because
you configure only the affected edges, not the entire network. To
understand this better, contrast the case of a VLAN with that of an
L3VPN. In the case of VLAN, every network hop along the path
from a source to a destination must know about a VLAN. In other
words, configuring a VLAN involves configuring it on every hop
along the path. In the case of L3VPN, only the edges that connect to
the virtual network need to be configured with information about
that virtual network. The core of the L3VPN network is unaware of
these virtual networks and so does not need to be configured.

The final major benefit of overlay networks is that they allow the
reuse of existing equipment. Only the edges participating in the vir‐
tual networks need to support the semantics of virtual networks.
This also makes overlays extremely cost effective. If you want to try
out an update to the virtual network software, only the edges need
to be touched, whereas the rest of the network can hum along just
fine. In reality, this last benefit is a property of the solution chosen
for the overlay, as we shall see in “The Consequences of Tunneling”
on page 7.

4 | Network Virtualization

Network Tunneling
The most common way to identify the virtual network of a packet is
to carry a VNI in the packet. Where is the VNI carried? What is it
called? How big is it? These questions have been answered more
than once, alas with different answers each time. But the concept of
a network tunnel is common to them all.

In real life, a tunnel connects two endpoints separated by something
that prevents such a connection (such as a mountain). So it is with
network tunnels, too. A network tunnel allows communication
between two endpoints through a network that does not allow such
communication.

Let’s use Figure 1-1 to understand the behavior of network tunnels.
R1, R2, and R3 are routers, and their forwarding table state is shown
in the box above them. The arrow illustrates the port the router
needs to send the packet out to reach the destination associated with
that entry. In the upper part of the picture, R2 knows only how to
forward packets destined to R1 or R3. So, when a packet from A to B
reaches it from R1, R2 drops the packet. In the lower part of the pic‐
ture, R1 adds a new header to the packet, with a destination of R3
and a source of R1. R2 knows how to forward this packet. On reach‐
ing R3, R3 removes the outer header and sends the packet to B
because it knows how to reach B. Between R1 and R3, the packet is
considered to be in a network tunnel. A common example of net‐
work tunnels that behave this way is the VPN from an employee’s
laptop at home to a lab machine in the office lab.

The behavior of R1, R2, and R3 resemble the behavior of a virtual
network overlay. A and B are in a private network that is unknown
to the core R2. This is why virtual network overlays are imple‐
mented using network tunnels.

Network Tunneling | 5

Figure 1-1. Illustrating network tunnels, when A sends a packet to B

In an overlay virtual network, a tunnel endpoint (R1 and R3 in
Figure 1-1) is termed a network virtualization edge (NVE). The
ingress NVE, which marks the start of the virtual network overlay
(R1 in our example), adds the tunnel header. The egress NVE, which
marks the end of the virtual network overlay (R3 in our example),
strips off the tunnel header.

Network tunnels come in various shapes and forms. The tunnel
header can be constructed using an L2 header or an L3 header.
Examples of L2 tunnels include double VLAN tag (Q-in-Q or
double-Q), TRILL, and Mac-in-Mac (IEEE 802.1ah). Popular L3
tunnel headers include VXLAN, IP Generic Routing Encapsulation
(GRE) and Multiprotocol Label Switching (MPLS). L2 tunnel head‐
ers are of course constrained by their inability to cross an L3 bound‐
ary.

Network tunnels also specify whether their payload is an L2 packet
or an L3 packet. Tunnels based on L2 headers always carry an L2

6 | Network Virtualization

payload, whereas L3 tunnels can carry either an L2 payload or an L3
payload. The tunnel definition and setup define the kind of payload
the tunnel will carry.

Another difference in network tunnels is whether they connect only
two specific endpoints (called point-to-point) or one endpoint with
multiple other endpoints (called point-to-multipoint). L3VPN with
MPLS is an example of the former, and Virtual Private LAN Switch‐
ing (VPLS) is an example of the latter.

The size of the VNI in each of these tunnels is different. MPLS
defines a 20-bit VNI (called the VPN ID), whereas the other encap‐
sulations use a 24-bit VNI. This means MPLS can carry 1 million
(220) unique virtual networks, whereas the other tunnels can carry
16 million (224) unique virtual networks.

The Consequences of Tunneling
The primary benefit of these tunneling protocols was supposed to
keep the core underlay from having to know anything about these
virtual networks. However, there are no free lunches. The following
subsections discuss traditional aspects of networking where virtuali‐
zation has unintended consequences. Some of these we can address,
whereas some others we cannot.

Packet Load Balancing
Tunneled (or encapsulated) packets pose a critical problem when
used with existing networking gear. That problem lies in how packet
forwarding works in the presence of multiple paths. In the presence
of multiple paths to a destination, a node has the choice of either
randomly selecting a node to which to forward the packet or ensur‐
ing that all packets belonging to a flow take the same path. A flow is
roughly defined as a group of packets that belong together. Most
commonly, a Transmission Control Protocol (TCP) or User Data‐
gram Protocol (UDP) flow is defined as the 5-tuple of source IP
address, destination IP addresses, the Layer 4 (L4) protocol (TCP/
UDP), the L4 source port, and the L4 destination port. Packets of
other protocols have other definitions of flow. A primary reason to
identify a flow is to ensure the proper functioning of the protocol
associated with that flow. If a node forwards packets of the same
flow along different paths, these packets can arrive at the destination
in a different order from the order in which they were transmitted

Network Tunneling | 7

by the source. This out-of-order delivery can severely affect the per‐
formance of the protocol. However, it is also critical to ensure maxi‐
mum utilization of all the available network bandwidth; that is,
utilize all the network paths to a destination. Every network node
makes decisions that optimize both constraints.

When a packet is tunneled, the transit or underlay nodes see only
the tunnel header. They use this tunnel header to determine what
packets belong to a flow. An L3 tunnel header typically uses a differ‐
ent L4 protocol type to identify the tunnel type (IP GRE does this, as
an example). For traffic between the same ingress and egress NVE,
the source and destination addresses are always the same. However,
a tunnel usually carries packets belonging to multiple flows. This
flow information is after the tunnel header. Because existing net‐
working gear cannot look past a tunnel header, all packets between
the same tunnel ingress and egress endpoints take the same path.
Thus, tunneled packets cannot take full advantage of multipathing
between the endpoints. This leads to a dramatic reduction in the uti‐
lized network bandwidth. Early networks had little multipathing,
and so this limitation had no practical impact. But multipathing is
quite common in modern networks, especially data center networks,
thus this problem needed a solution.

A clever fix for this problem is to use UDP as the tunnel. Network
nodes have load balanced UDP packets for a long time. Like TCP,
they send all packets associated with a UDP flow along the same
path. When used as a tunnel header, only the destination UDP port
identifies the tunnel type. The source port is not used. So, when
using UDP for constructing tunnels, the tunnel ingress sets the
source port to be the hash of the 5-tuple of the underlying payload
header. Ensuring that the source port for all packets belonging to a
TCP or UDP flow is set to the same value enables older networking
gear to make maximal use of the available bandwidth for tunneled
packets without reordering packets of the underlying payload. Loca‐
tor Identity Separation Protocol (LISP) was the first protocol to
adopt this trick. VXLAN copied this idea.

Network Interface Card Behavior
On compute nodes, a network interface card (NIC) provides several
important performance-enhancing functions. The primary ones
include offloading TCP segmentation and checksum computation
for the IP, TCP, and UDP packets. Performing these functions in the

8 | Network Virtualization

NIC hardware frees the CPU from having to perform these
compute-intensive tasks. Thus, end stations can transmit and
receive at substantially higher network speeds without burning
costly and useful CPU cycles.

The addition of packet encapsulations or tunnels foils this. Because
the NIC does not know how to parse past these new packet headers
to locate the underlying TCP/UDP/IP payload or to provide addi‐
tional offloads for the tunnel’s UDP/IP header, the network perfor‐
mance takes a significant hit when these technologies are employed
at the endpoint itself. Although some of the newer NICs understand
the VXLAN header, this problem has been a primary reason
VXLAN from the host has not taken off. So, people have turned to
the network to do the VXLAN encapsulation and decapsulation.
This in turn contributed to the rise of EVPN.

Maximum Transmission Unit
In an L3 network, every link is associated with a maximum packet
size called the Maximum Transmission Unit (MTU). Every time a
packet header is added, the maximum allowed payload in a packet is
reduced by the size of this additional header. The main reason this is
important is that modern networks typically do not fragment IP
packets, and if end stations are not configured with the proper
reduced MTU, the introduction of virtual networks into a network
path can lead to difficult-to-diagnose connectivity problems.

Lack of Visibility
Network tunnels obscure the ecosystem they plow through. Classic
debugging tools such as traceroute will fail to reveal the actual path
through the network, presenting instead the entire network path
represented by the tunnel as a single hop. This means troubleshoot‐
ing networks using tunnels is painful.

VXLAN
VXLAN is a relatively new (only eight years old) tunneling technol‐
ogy designed to run over IP networks while providing L2 connectiv‐
ity to endpoints. It uses UDP/IP as the primary encapsulation
technology to allow existing network equipment to load balance
packets over multiple paths, a common condition in data center net‐

VXLAN | 9

https://tools.ietf.org/html/rfc7348

works. VXLAN is primarily deployed in data centers. In VXLAN,
the tunnel edges are called VXLAN tunnel end points (VTEPs).

Figure 1-2 shows the packet format of VXLAN.

Figure 1-2. VXLAN header

As mentioned in “Packet Load Balancing” on page 7, the UDP
source port is computed at the ingress VTEP using the inner pay‐
load’s packet header. This allows a VXLAN packet to be correctly
load balanced by all the transit nodes. The rest of the network for‐
wards packets based on the outer IP header.

VXLAN is a point-to-multipoint tunnel. Multicast or broadcast
packets can be sent from a single VTEP to multiple VTEPs in the
network.

You might have noticed several oddities in the header. Why did we
need yet another tunneling protocol? Why is the VNI 24 bits? Why
are there so many reserved bits? The entire VXLAN header could
have been just 4 bytes, so why is it 8? Why have a bit that is always 1?
The main reason for all this is historical, and I am mostly responsi‐
ble for this.

History Behind the VXLAN Header
Circa 2010, Amazon’s AWS had taken off in a big way, especially its
elastic compute service (ECS). VMWare, the reigning king of virtu‐
alizing compute, approached Cisco, the reigning king of network‐
ing, for help with network virtualization. VMWare wanted to
enable its enterprise customers to build their own internal AWS-
like infrastructures (called private clouds). VMWare wanted an L2
virtual network, like VLANs, but based on an overlay model with

10 | Network Virtualization

the ability to support millions of virtual networks. It also wanted
the network to be IP-based due to IP’s ubiquity and better scalabil‐
ity than L2-based technologies. The use of MPLS was nonstarter
because MPLS was considered too complex and not supported
inside an enterprise.

As one of the key architects in the data center business unit at
Cisco, I was tasked with coming up with such a network tunnel. I
first looked at IP-GRE, but then quickly rejected it because we
wanted a protocol that was easy for firewalls to pass. Configuring a
UDP port for passage through a firewall was easy, but an L4 proto‐
col like GRE was not. Moreover, GRE was a generic encapsulation,
with no specific way to identify the use of GRE for purposes other
than network virtualization. This meant the header fields could be
used differently in other use cases, preventing underlying hardware
from doing something specific for network virtualization. I was
tired of supporting more and more tunneling protocols in the
switching silicon, each just a little different.

I already had over-the-top virtualization (OTV—a proprietary pre‐
cursor to EVPN) and LISP protocols to support. I wanted VXLAN
to look like OTV and for both to resemble LISP, given that LISP
was already being discussed in the standards bodies. But there were
already existing OTV and LISP deployments, so whatever header I
constructed had to be backward-compatible. Thus I made the VNI
24 bits because many L2 virtual networks already supported 24-bit
VNIs, and I didn’t want to build stateful gateways just to keep VNI
mappings between different tunneling protocols. The reserved bits
and the always 1 bit are there because those bits mean something
else in the case of LISP and OTV. In other words, the rest of the
header format is a consequence of trying to preserve backward
compatibility. The result is the VXLAN header you see.

Protocols to Implement the Control Plane
The control plane in a network overlay solution has to provide the
following:

• A mechanism to map the inner payload’s destination address to
the appropriate egress NVE’s address.

Protocols to Implement the Control Plane | 11

• A mechanism to allow each NVE to list the virtual networks it is
interested in, to allow point-to-multipoint communication such
as broadcast.

Because VXLAN is an example of a virtual L2 network, the mapping
of the inner MAC address to the outer tunnel egress IP address is a
mapping of a {VNI, MAC} tuple to the NVE’s IP address. Therefore,
the forwarding table typically involved in providing this mapping is
the MAC forwarding table. We’ll see why this is important in Chap‐
ter 5.

VXLAN was designed to allow compute nodes to be the NVEs.
Because the spin up and spin down of virtual machines (VMs) or
containers was known only to the compute nodes, it seemed sensible
to allow them to be NVEs. Furthermore, making the compute nodes
the NVEs meant that the physical network itself could be quite sim‐
ple.

Multiple software vendors signed up to provide such a solution.
Examples of such solutions include VMWare’s NSX, Nuage Net‐
works, and Midokura. Networks running VXLAN were the original
Software-Defined Network (SDN), where the software (orchestra‐
tion software that spun up new VMs and their associated virtual
networks) controlled the provisioning of the virtual network over an
immutable underlay. But for various reasons, this solution did not
take off the way it was expected.

An alternate approach to this SDN solution was to rely on tradi‐
tional networking protocols such as Border Gateway Protocol
(BGP) to provide this mapping information. EVPN belongs to this
category of solutions, which are called controller-less VXLAN.

Support for Network Virtualization
Technologies
We conclude our journey on network virtualization with a survey of
what is supported, both in the open networking ecosystem as well as
with traditional networks. We also briefly examine the work in vari‐
ous standards bodies associated with these technologies.

12 | Network Virtualization

https://www.safaribooksonline.com/library/view/evpn-in-the/9781492029045/ch05.html#routing_with_ethernet_vpn
https://www.safaribooksonline.com/library/view/evpn-in-the/9781492029045/ch05.html#routing_with_ethernet_vpn

Merchant Silicon
The era of networking companies building their own custom
switching Application-Specific Integrated Circuits (ASICs) is seem‐
ingly near the end. Everyone is increasingly relying on merchant sil‐
icon vendors for their switching chips. As if to highlight this very
switch (pun intended), just about every traditional networking ven‐
dor first supported VXLAN on merchant switching silicon. Broad‐
com introduced support for it with its Trident2 platform, adding
VXLAN routing support in the Trident2+ and Trident3 chipsets.
Mellanox first added support for VXLAN bridging and routing in its
Spectrum chipset. Other merchant silicon vendors such as Cavium
via its Xpliant chipset and Barefoot Networks also support VXLAN,
including bridging and routing. All these chips also support VRF.
Most switching silicon at the time of this writing did not support
using IPv6 as the VXLAN tunnel header. VXLAN of course happily
encapsulates and transmits inner IPv6 payloads.

Software
The Linux kernel itself has natively supported VXLAN for a long
time now. VRF support in the Linux kernel was added by Cumulus
Networks in 2015. This is now broadly available across multiple
modern server Linux distributions (for example, as early as Ubun‐
tu’s 16.04 had basic IPv4 VRF support). The earliest kernel version
with good, stable support for VRF is 4.14.

Cumulus Linux in the open networking world as well as all tradi‐
tional networking vendors have supported VXLAN for several
years. Routing across VXLAN networks is newer. Although the
Linux kernel has supported routing across VXLAN networks from
the start, some additional support that was required for EVPN has
been added. We’ll examine these additions in the subsequent chap‐
ters.

Standards
The Internet Engineering Task Force (IETF) is the primary body
involved with network virtualization technologies, especially those
based on IP and MPLS. VXLAN is an informational RFC, RFC
7348. Most of the network virtualization work is occurring under
the auspices of the NVO3 (Network Virtualization Over L3) work‐
ing group at the IETF. Progress is slow, however. Except for some

Support for Network Virtualization Technologies | 13

http://bit.ly/2szf382
http://bit.ly/2szf382

agreement on basic terminology, I’m not aware that any work from
the NVO3 working group is supported by any major networking
vendor or by Linux. However, EVPN-related work is occurring in
the L2VPN working group. Aspects of EVPN in conjunction with
VXLAN is still in the draft stages of the standards workflow. But the
specification itself has been stable for quite some time and the base
specification was made a standard document in early 2018. Multiple
vendors, along with FRR (Free Range Routing, the open source
routing suite), support EVPN with most of its major features.

Summary
In this chapter, we studied the fundamental technology and ideas
behind network virtualization. In Chapter 3, we switch gears to look
at the fundamentals of EVPN support. This chapter also introduces
how EVPN configuration in the data center differs from its counter‐
part in the service provider world.

14 | Network Virtualization

https://www.safaribooksonline.com/library/view/evpn-in-the/9781492029045/ch03.html#building_blocks_of_ethernet_vpn

About the Author
Dinesh G. Dutt has been in the networking industry for the past 20
years, most of it at Cisco Systems. Most recently, he was the chief
scientist at Cumulus Networks. Before that, he was a fellow at Cisco
Systems. He has been involved in enterprise and data center net‐
working technologies, including the design of many of the ASICs
that powered Cisco’s mega-switches such as Cat6K and the Nexus
family of switches. He also has experience in storage networking
from his days at Andiamo Systems and in the design of FCoE. He is
a coauthor of TRILL and VxLAN and has filed for over 40 patents.

	Cover
	Copyright
	Table of Contents
	Chapter 1. Network Virtualization
	What Is Network Virtualization?
	Types of Virtual Networks

	Network Tunneling
	The Consequences of Tunneling
	Packet Load Balancing
	Network Interface Card Behavior
	Maximum Transmission Unit
	Lack of Visibility

	VXLAN
	Protocols to Implement the Control Plane
	Support for Network Virtualization Technologies
	Merchant Silicon
	Software
	Standards

	Summary

	About the Author

